In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
In this paper we define a signal soft set as a mathematical tool to represent and study atoms, anti-atoms, electrons, anti-electrons, protons, and anti-protons, and generate a signal soft topology, with an example of signal soft topology on H2O.
The multiplicity of connotations in any paper does not mean that there is no main objective for that paper and certainly one of these papers is our research the main objective is to introduce a new connotation which is type-2 fuzzy somewhere dense set in general type-2 fuzzy topological space and its relationship with open sets of the connotation type-2 fuzzy set in the same space topology and theories of this connotation.
In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if is character on Z then ker is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is -fuzzy closed subset of fb(Z, ) when (Z, , , ) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.
In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
A -set in the projective line is a set of projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where Also, the has been splitting into two distinct -sets, equivalent and inequivalent.
In this paper we discuss the Zariski topology of intuitionistic fuzzy d-filter in d-algebra, with some topological properties on the spectrum of intuitionistic fuzzy d-filter in d-algebra X which have algebraic features such as connectedness. We find that this topology is a strongly connected, and T0 space. We also define the invariant map on intuitionistic fuzzy prime d-filter with a homomorphism map.
The main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
In this paper, we define the concept of soft -connected sets and soft -connected spaces by using the notion of soft -open sets in soft topological spaces. Several properties of these concepts are investigated.