In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreThe main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
The primary objective of this paper is to present a new concept of fibrewise topological spaces over B is said to be fibrewise slightly topological spaces over B. Also, we introduce the concepts of fibrewise slightly perfect topological spaces, filter base, contact point, slightly convergent, slightly directed toward a set, slightly adherent point, slightly rigid, fibrewise slightly weakly closed, H.set, fibrewise almost slightly perfect, slightly∗ .continuous fibrewise slightly∗ topological spaces respectively, slightly Te, locally QHC, In addition, we state and prove several propositions related to these concepts.
We introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
Abstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show MoreFuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .
Abstract. The purpose of this work is to introduce and investigate new concepts of mappings namely nano paracompactmappings, nano locally limited, nano h-locally limited and finally nano-perfect in nano topology by using nano-closed sets. As well as, the relation between these concepts of mappings have been study in nano topology. Additionally, the nano topology groups of the types and advances results which are introduces in this work are very vital. We also presented the type of nano Lindeloff mappings, and the relations of them was introduce and discussed with several characteristics related it. Nano morphism also introduce.
in this paper, we give a concept of