Intelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we improve the robustness of forecasting production from smart wells using reservoir simulation. High-level details in the rock and fluid flow properties are required in the horizontal well region to capture the flow dynamics accurately. Thus, the study offers an enhanced method for predicting the performance of intelligent or smart wells in reservoir modeling. This model was history matched for a period of 20 years for three horizontal wells by using program Petrel (2017.4) and ECLIPS (2011). After successful validation of model on a field scale and well level, performance prediction was carried out to see the effect of (number of valves, number of nozzle and compartment length) using PICD/AFCV completion. Optimizing well performance entails lowering water-cut. From an economic viewpoint, the goal is to maximize NPV or profit, depending on the situation, from PICD wells, which compared to other wells.
The importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure.
The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts.
The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling exe
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreThe main parameter that drives oil industry contract investment and set up economic feasibility study for approving field development plan is hydrocarbon reservoir potential. So a qualified experience should be deeply afforded to correctly evaluate hydrocarbons reserve by applying different techniques at each phase of field management, through collecting and using valid and representative data sources, starting from exploration phase and tune-up by development phase. Commonly, volumetric calculation is the main technique for estimate reservoir potential using available information at exploration stage which is quite few data; in most cases, this technique estimate big figure of reserve. In this study
Drilling well design optimization reduces total Authorization for Expenditures (AFE) by decreasing well constructing time and expense. Well design is not a constant pattern during the life cycle of the field. It should be optimized by continuous improvements for all aspects of redesigning the well depending on the actual field conditions and problems. The core objective of this study is to deliver a general review of the well design optimization processes and the available studies and applications to employ the well design optimization to solve problems encountered with well design so that cost effectiveness and perfect drilling well performance are achievable. Well design optimization processes include unconventional design(slimhole) co
... Show MoreOne of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreThis study included the extraction properties of spatial and morphological basins studied using the Soil and Water Assessment Tool (SWAT) model linked to (GIS) to find the amount of sediment and rates of flow that flows into the Haditha reservoir . The aim of this study is determine the amount of sediment coming from the valleys and flowing into the Haditha Dam reservoir for 25 years ago for the period (1985-2010) and its impact on design lifetime of the Haditha Dam reservoir and to determine the best ways to reduce the sediment transport. The result indicated that total amount of sediment coming from all valleys about (2.56 * 106 ton). The maximum annual total sediment load was about (488.22 * 103 ton) in year 1988
... Show MoreN-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
A study has been done to find the optimum separators pressures of separation stations. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid discharged from a higher pressure separator into the lower pressure separator. The set of working separators pressures which yield maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures which is the target of this work.
Computer model is used to find the optimum separators pressures. The model employs the Peng-Robinson equation of state for volatile oil. Application of this model shows good improvement of al