Intelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we improve the robustness of forecasting production from smart wells using reservoir simulation. High-level details in the rock and fluid flow properties are required in the horizontal well region to capture the flow dynamics accurately. Thus, the study offers an enhanced method for predicting the performance of intelligent or smart wells in reservoir modeling. This model was history matched for a period of 20 years for three horizontal wells by using program Petrel (2017.4) and ECLIPS (2011). After successful validation of model on a field scale and well level, performance prediction was carried out to see the effect of (number of valves, number of nozzle and compartment length) using PICD/AFCV completion. Optimizing well performance entails lowering water-cut. From an economic viewpoint, the goal is to maximize NPV or profit, depending on the situation, from PICD wells, which compared to other wells.
Many carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system
A detailed systematic study of calcareous nannofossils was carried out for the Jaddala Formation in (Aj-10) well, Central Iraq. Seventy one species belong to twenty four genera of calcareous nannofossils were identified including sixty two of them were previously named and nine species were identified for the first time and they would not be given names until more information is obtained in the future to support this identification.
It is a recorded of five biostratigraphic zone, which suggested the age of the Jaddala Formation to be of early to late Eocene. The recorded biozone includes the following: Reticulofenestra dictyoda (Deflandre in Deflandre & Fert, 1954) Stradner & Edwards, 1968 Partial Range Biozone (CNE 5); Discoa
Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.
Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie
... Show MoreContemporary art has been widely affected by technology, and ceramics production is no exception. As an ancient art that originates from clay and other humble materials found in the ground, ceramics is considered one of the most adaptable art forms. Once it is realised how flexible ceramics as a material is, it can be easily altered into endless forms and shapes. Therefore, it is vital for ceramics practitioners to find a relationship between this wonderful material and the media of contemporary art, culture and modelling software or technology in general so that they can take their deformable art pieces to a whole new level. Such a relationship is worth investigating. Thus, for the purposes of this research, several ceramic pieces were
... Show MoreIn petroleum reservoir engineering, history matching refers to the calibration process in which a reservoir simulation model is validated through matching simulation outputs with the measurement of observed data. A traditional history matching technique is performed manually by engineering in which the most uncertain observed parameters are changed until a satisfactory match is obtained between the generated model and historical information. This study focuses on step by step and trial and error history matching of the Mishrif reservoir to constrain the appropriate simulated model. Up to 1 January 2021, Buzurgan Oilfield, which has eighty-five producers and sixteen injectors and has been under production for 45 years when it started
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show More