The emergence of artistic movements in Western countries was after the period of modernity. They have introduced a great dialectical problem at the level of thought and discourse, which necessitated a change in the course of the aesthetic discourse into new visions. Thus, the present research aims to identify the aesthetic discourse of pop artists' Art and its representations in the outputs of the students of the Department of Art Education. The theoretical framework included two sections: the first one, what is the aesthetic discourse and the second is the educational bases of the students' outputs. The procedures of the current research included the analytical descriptive approach. The research sample consisted of (4) outputs chosen ac
... Show MoreIn this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing
... Show MoreIn this research was conducted to provide a product to analyze the performance sensor fiber optic used to measure and feel the intensity of the electric field results showed obtained that use sensor long gives reactive high electric field strength and a high value for allergic sensor, but that is at the expense of reducing the intensity of the electric field that is detected
The porosity of materials is important in many applications, products and processes, such as electrochemical devices (electrodes, separator, active components in batteries), porous thin film, ceramics, soils, construction materials, ..etc. This can be characterized in many different methods, and the most important methods for industrial purposes are the N2 gas adsorption and mercury porosimetry. In the present paper, both of these techniques have been used to characterize some of Iraqi natural raw materials deposits. These are Glass Sand, Standard Sand, Flint Clay and Bentonite. Data from both analyses on the different types of natural raw materials deposits are critically examined and discussed. The results of specific surface are
... Show MoreNumerous drilling additives and materials are used continuously because they are necessary to support and give the required properties of the drilling fluid so that to ensure the stability of the borehole. This paper aspires to evaluate the rheological properties of bentonite (montmorillonite) Trefawey as an alternative to using commercial bentonite. Monitoring and evaluating of the rheological and filtration properties were prepared. This exertion aims to focus on the effect of hematite, and barite on the rheological properties of the three aforementioned bentonite types. An improvement in the rheological properties of bentonite (montmorillonite). Trefawey was observed after adding the previous heavy materials. Hematite has by some
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThe performance of a vapor compression refrigeration system (VCRS)-based residential air conditioner operating in a high-ambient temperature (HAT) country was investigated using six zero-ODP (ozone depletion potential) refrigerants as replacements to R22. The non-flammable alternative refrigerants considered in the present research were R134a, R404A, R407C, R410A, R448A, and R507A. Using the basic conservation laws, the VCRS was modeled during steady-state operation and solved using engineering equation solver (EES) software. Coefficient of performance (COP), pressures and temperatures at compressor suction and discharge, Global Warming Potential (GWP), critical pressure and temperature, compressor
Acinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show More