The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
Abstract  
... Show MoreThe major objective of this study is to establish a network of Ground Control Points-GCPs which can use it as a reference for any engineering project. Total Station (type: Nikon Nivo 5.C), Optical Level and Garmin Navigator GPS were used to perform traversing. Traversing measurement was achieved by using nine points covered the selected area irregularly. Near Civil Engineering Department at Baghdad University Al-jadiriya, an attempt has been made to assess the accuracy of GPS by comparing the data obtained from the Total Station. The average error of this method is 3.326 m with the highest coefficient of determination (R2) is 0.077 m observed in Northing. While in
In this paper we present a method to analyze five types with fifteen wavelet families for eighteen different EMG signals. A comparison study is also given to show performance of various families after modifying the results with back propagation Neural Network. This is actually will help the researchers with the first step of EMG analysis. Huge sets of results (more than 100 sets) are proposed and then classified to be discussed and reach the final.
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreThe study aims at identifying the sources of information and explaining their role in e-learning from the viewpoint of the Iraqi college students. The researchers relied on the descriptive method of the survey method to collect data and know the point of view of undergraduate students from the Department of Information in the College of Arts / Tikrit University and the Department of Quranic Studies at the College of Arts / University of Baghdad. The questionnaire was used as an instrument of the study, the research sample is (120) students; each section has (60) male and female students. The study concluded that there are many types and forms of information sources that students receive through electronic educational platforms from text con
... Show MoreCoronavirus disease (Covid-19) has threatened human life, so it has become necessary to study this disease from many aspects. This study aims to identify the nature of the effect of interdependence between these countries and the impact of each other on each other by designating these countries as heads for the proposed graph and measuring the distance between them using the ultrametric spanning tree. In this paper, a network of countries in the Middle East is described using the tools of graph theory.