The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the addition of ceramic fiber and hydrated lime to the mixtures the dry method for ceramic fiber was adopted while for the hydrated lime, the saturated surface dry method was adopted. The results of this study have shown that the addition of 1% ceramic fiber with 1.5% hydrated lime recorded the highest levels of growth. Furthermore, the outputs of the tests used in this study have shown that the use of ceramic fibers resulted in a growth in the value of tensile strength ratio (TSR) and in the index of retained strength (IRS) compared with the control mixture. Maximum values for TSR were achieved at 1% ceramic fibers with 1.5 % hydrated lime.
Urban planning include the creation of strategies as well as the management of metro regions, municipalities, and cities. In this study, the importance of applications of remote sensing and GIS in urban planning will be studied. The distribution of educational destitution cases in cities will be considered. A study area (Baghdad city) will be adopted, and the spatial analysis of the distribution will be according to population densities. In this study, the focus was on the importance of the sustainable distribution of urban educational institutions and the spatial appropriateness of this distribution according to the study areas and the available information. Distribution maps were pr
This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Twenty three samples of granular chemical fertilizers and organic fertilizers commonly utilized in Iraqi ranches were collected. The samples were prepaid and stored in a Marinelli beaker to measure; dose rate, general count rate and surface contamination of the samples using the RadEye B20 detector, firstly with shield, secondly without the shield to estimate the effect of shielding on the measurements. The results showed that using shield made a significant decrease in the radiation measurements reached about 25%. However the mean value of surface contamination, dose rate and general count rate with shield were 0.54Bq/cm2, 0.65µsv/h, and 0.28Cps respectively, and without shield being 0.34Bq/cm2, 1.33µsv/h, and 1.52Cps respectively
... Show MoreEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreThis paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show More