The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the addition of ceramic fiber and hydrated lime to the mixtures the dry method for ceramic fiber was adopted while for the hydrated lime, the saturated surface dry method was adopted. The results of this study have shown that the addition of 1% ceramic fiber with 1.5% hydrated lime recorded the highest levels of growth. Furthermore, the outputs of the tests used in this study have shown that the use of ceramic fibers resulted in a growth in the value of tensile strength ratio (TSR) and in the index of retained strength (IRS) compared with the control mixture. Maximum values for TSR were achieved at 1% ceramic fibers with 1.5 % hydrated lime.
This study aims mainly to identify the role of the use of blockchain technology in improving the quality of digital financial reports, answering questions and testing the hypothesis of the study, the researchers relied on the descriptive analytical approach, and to obtain the necessary data a questionnaire was distributed after evaluation to the study community.
The results of the study have shown that the use of blockchain technology helps to provide a high degree of reliability in digital financial reports published to banks over the Internet, ensure the speed of completion and completion, and maintain the privacy and confidentiality of the information contained in the digital financial reports of banks
... Show MoreThe deposition process and investigation of the physical properties of tungsten trioxide (WO3) thin films before and after gamma irradiation are presented in this paper. The WO3 thin films were deposited, using the pulse laser deposition technique, on glass substrates at laser energies of 600mJ and 800mJ. After deposition, the samples were gamma irradiated with Co60. The structural and optical properties of polycrystalline WO3 thin films are presented and discussed before and after 5kGy gamma irradiation at the two laser energies. X-ray diffraction spectra revealed that all the films consisted of WO3 crystallized in the triclinic form; the dislocation density and lattice strain increased with the absorbed dosage of gamma
... Show MoreIn this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
م.د. فاطمة حميد ،أ.م.د وفاء صباح محمد الخفاجي, International Journal of Psychosocial Rehabilitation,, 2020 - Cited by 1
The reinforced fiberglass in cement slurry reflects the effect on its properties compared to usual additives. Fiberglass is typically used in cement slurry design for one or another of the following goals: (Earth earthquake, bearing storage, and with differential stresses, to enhance cement durability and increase its compressive strength). The main goal is to use glass fiber and ground fiberglass to improve the tensile strength and moderate compressive strength significantly. On the other hand, the use of glass fibers led to a slight increase in the value of thickening time, which is a desirable effect. Eleven glass fiber samples and milled glass fiber were used to show these materials' effect on Iraqi cement with (0.125, 0.25, 0.5
... Show MoreIn this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding a
... Show More