The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or mixed were included in both the aqueous and methanolic extracts of silver nanoparticles. By comparing their retention times to those of the reference compounds, the HPLC findings revealed that two phenolic compounds (gallic acid and caffeine) had been discovered. Utilising the disc diffusion technique, the antibacterial activity of (CAgNPs) was assessed. The results indicated that the methanolic (CAgNPs) extract was more effective than the aqueous (CAgNPs) extract at 375 and 750 ppm, giving the highest inhibition zone 17.67 and 21.33 mm, respectively, when compared to the aqueous (CAgNPs) extract, which produced inhibitory zones 13.00 and 16.33 mm, respectively. The MIC findings indicated that the methanolic CAgNPs extract was more effective than the aqueous CAgNPs extract; the MIC of the methanolic CAgNPs extract was 23.43 μg/ml in all P. aeruginosa isolates, except the isolates No. 9 and 10, which was 11.718 μg/ml. While in the aqueous extract, the MIC in all P. aeruginosa isolates was 187.5 μg/ml, with the exception of isolates No. 9 and 10, which was 93.75 μg/ml. Additionally, the methanolic CAgNPs extract entirely inhibited P. aeruginosa from building a biofilm when used at 23.43 μg/ml. However, at 46.87 μg/ml of the aqueous CAgNPs extract, totally reduced the biofilm forming activity on P. aeruginosa isolates
The main object of the current work was to determine the antifungal efficiency of secondary metabolites product called synephrine that extracted from Citrus sinesis peels and the ability of synephrine to biosynthesis gold nanoparticles from HAucl4 which consider environmentally favourable method, then determine their activity against pathogenic human dermatophyte. The identification of synephrine done by Thin layer chromatography (TLC), High Performance Liquid Chromatography (HPLC) and The Fourier Transform Infrared (FTIR). The characterization of gold nanoparticles by using Ultra Violet-Visible Spectroscopy (UV-Vis), Field – Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR), confirmed the biosynt
... Show MorePseudomonas aeruginosa is common gram negative rod – shaped bacterium, a species of considerable medical importance, P. aeruginosa is prototypical "multi drug resistant (MDR) Pathogen" that is recognised for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its associatation with serious illnesses – especially nosocomial infection such as ventilator – associated pneumonia and various sepsis syndromes. This study was conducted from March 2014 to July 2014, the patients were males and females. Total samples of 613 patients, selected from burns wards and general surgery wards, the samples were sending to teaching laboratories from the same hospital. The present study
... Show MoreBackground: Pseudomonas aeruginosa is a devious pathogen with the tendency to prompt many acute and serious chronic diseases. This study aims to detect novel genes (Toxins-Antitoxins II system), especially; higB and higA encoded from P. aeruginosa by PCR technique and the relation between these genes and antibiotic resistance of P. aeruginosa. Methods: This study detected 50 isolates of P. aeruginosa from distinct clinical sources. The most common origin of isolates was (44%) burn swabs, (22%) urine culture, (12%) wound swabs, (14%) sputum, and (8%) ear swabs. The bacteria were isolated using implantation MacConkey agar and blood agar, as well as biochemical tests including oxidase test, catalase test then VITEK-2 System of P. aerug
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreThe present work aimed to investigate the neuraminidase (nan1) gene expression in 32 different clinical isolates of Pseudomonas aeruginosa to explore the role of the enzyme in different types of infection and might give a better understanding of host cell-pathogens interaction. In addition, the effect of monosaccharide D-mannose on neuraminidase gene expression in eight isolates was studied by utilizing a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results demonstrated that the highest expression of nan1 gene was in otitis samples (208,913.81) which were significantly higher than that from other infections (P < 0.01). While, the concentrations of gene copies obtained from urin
... Show MoreA new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show MoreA laboratory experiment studied the effects of the green tea (Camellia sinensis L.) aqueous extract at concentrations of 10, 20, and 30 ppm on the germination and growth traits of the mung bean (Vigna radiata L.), carried out in 2021 at the Department of Biology, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Iraq. The results showed that Camellia sinensis green tea extracts played a vital role by significantly boosting all the examined characteristics compared with the control treatment. The aqueous extract of Green tea at concentrations of 10 and 20 ppm gave the best performance in increasing germination rates, germination speed, plant promoter indicator, and seedling strength compared with the control trea
... Show MoreThe effect of local Lactobacillus gasseri filtrate against Pseudomonas aeruginosa infection in mice was studied . 0.25 ml of concentrated filtrate Lactobacillus gasseri was injected in intraperitoneally ( I.P.) 5 days before challenge with 0.2 ml viable P. aeruginosa ( 10 8 cell/ ml). Animals were sacrificed after 12 h. from challenge by cutting the femoral artery . To follow bacterial growth in the peritoneal cavity , its contents were washed out with 5 ml of PBS .The fluid was diluted, 0.1 ml from each dilution and was spread on culture media. The number of colonies in 5 ml of harvested fluid was expressed as Log 10 CFU ,and the percentage of Macrophage in t
... Show MoreThe aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show More