The purpose of this study to synthesize and characterize silver nanoparticles using phenolic compounds obtained from Camellia sinensis, to test the antibacterial properties of biosynthesized nanoparticles on the formation of biofilms in multidrug-resistant Pseudomonas aeruginosa. Ten isolates of P. aeruginosa were obtained from the Genetic Engineering and Biotechnology Institute laboratories of the University of Baghdad. By using the VITEK-2 system and culturing the isolates on cetrimide agar, the diagnosis was confirmed. Camellia sinensis silver nanoparticles (CAgNPs) were created using an extract of the plant's aqueous and methanolic leaves. Based on the results of the nanoparticle synthesis, spherical nanoparticles that may be single or mixed were included in both the aqueous and methanolic extracts of silver nanoparticles. By comparing their retention times to those of the reference compounds, the HPLC findings revealed that two phenolic compounds (gallic acid and caffeine) had been discovered. Utilising the disc diffusion technique, the antibacterial activity of (CAgNPs) was assessed. The results indicated that the methanolic (CAgNPs) extract was more effective than the aqueous (CAgNPs) extract at 375 and 750 ppm, giving the highest inhibition zone 17.67 and 21.33 mm, respectively, when compared to the aqueous (CAgNPs) extract, which produced inhibitory zones 13.00 and 16.33 mm, respectively. The MIC findings indicated that the methanolic CAgNPs extract was more effective than the aqueous CAgNPs extract; the MIC of the methanolic CAgNPs extract was 23.43 μg/ml in all P. aeruginosa isolates, except the isolates No. 9 and 10, which was 11.718 μg/ml. While in the aqueous extract, the MIC in all P. aeruginosa isolates was 187.5 μg/ml, with the exception of isolates No. 9 and 10, which was 93.75 μg/ml. Additionally, the methanolic CAgNPs extract entirely inhibited P. aeruginosa from building a biofilm when used at 23.43 μg/ml. However, at 46.87 μg/ml of the aqueous CAgNPs extract, totally reduced the biofilm forming activity on P. aeruginosa isolates
The present study was undertaken in order to investigate the role of gentamicin in the gene expression of toxA in Pseudomonas aeruginosa isolated from cow mastitis. A total of ten P. aeruginosa strains originally isolated from cows infected with mastitis. Agar dilution methodology was performed to determine the minimal inhibitory concentration of gentamicin, all of which developed resistance toward gentamicin. The findings presented here demonstrated that all these strains harboured toxA depending on PCR-based assay. Nonetheless, RT-PCR technique revealed a wide variation in expression of toxA. Moreover, the cultivation of P. aeruginosa in the presence of gentamicin, significantly (P< 0.05), induced the expression of toxA, in addition to th
... Show MoreNutrient agar medium with various concentrations of cefotaxime was used for isolation spontaneous mutants from wild type strain of P.aeruginosa PHA-1. Eighty-two mutants were successfully isolated with the viable count 52×107 , these mutants were confirmed as spontaneous not physiological adaption mutants by reculture on the same medium. Then, wild type PHA-1 and mutants were examined for production pyocyanin; a blue greenish pigment was clearly noticed on King A medium. Remarkably the mutant strain named S300-8 was distinguished in productivity in comparison with wild type strain PHA-1; the amount of pigment was 56.0667mg/l and 74.53mg/l respectively. In addition, pyocyanin produced by mutant strain S300-8 revealed a potent efficacy again
... Show MoreOwing to high antibacterial resistance of Pseudomonas aeruginosa, it could be considered as the main reason behind the nosocomial infections. P. aeruginosa has a well-known biofilm forming ability. The expression of polysaccharide encoding locus (pelA gene) by P. aeruginosa is essential for this ability. The purpose of the current research was to determine the biofilm formation in P. aeruginosa isolated from clinical samples and to evaluate the role of the selected PelA gene in biofilm formation using PCR method in Iraqi patients. Results revealed that 24 (96%) isolates were found to have the ability to form biofilm that was remarkably related to gentamicin resistance. Moreover, the pelA gene was found in all biofilm-producers. In c
... Show MorePseudomonas aeruginosa produces an extracellular bioï¬lm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. Alginate, Psl and Pel are three exopolysaccharides that constitute the main components in biofilm matrix, with many biological functions attributed to them, especially concerning the protection of the bacterial cell from antimicrobial agents and immune responses. A total of 25 gentamicin-resistant P. aeruginosa selected isolates were enrolled in this study. Biofilm development was observed in 96% of the isolates. In addition, the present results clarified the presence of pelA and pslA in all the studied isolates. The expression of these genes was very low. Even though all biof
... Show MorePseudomonas aeruginosa readily binds to different kind of abiotic surfaces and form biofilm. The ability of the bacterial species to form biofilm onto polyvinyl chloride (PVC) is associated with several economic, health and environmental problems. The effect of kind of water on ability of this bacterium to form biofilm is scanty in literature. In present study, the ability of different environmental isolates of P. aeruginosa to form biofilm onto polystyrene microtiter plate was evaluated. Furthermore, the effect of waters that collected from different sources on biofilm formation of this bacterium onto PVC was studied. Spectrophotometric method was used to check the ability of bacteria to form biofilm and evaluated the role of waters onto a
... Show MoreResults of the current study demonstratedthat out of eighty-three isolatesof Pseudomonas aeruginosa,only twenty-five isolateswere resistant to five different antibiotics (of different classes) that were consequentlyconsideredmultidrug resistant isolates.These isolates developed variable susceptibility toward Eucalyptuscamaldulensisleavesoil (ECO). GC-MS analysis of ECOrevealed that the aromatic oil eugenol is the major constituent.However, the most frequent MIC was 0.39 µg/ml, while the lowest frequent MIC was 3.125 µg/ml.Moreover, this oil at ½ MIC (0.195µg/ml) increased the gene expression of exoU. Itis concluded from the outcomes of the studythat ECOmay cause severe damagewhen used to treat infections caused by P. aeruginosa.
... Show MorePseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The res
... Show MoreKlebsilla pneumoniae is one of must opportunistic pathogens that causes nosocomial infection, UTI, respiratory tract infections and blood infections. ZrO2 nanoparticles have antimicrobial activity against some pathogenic bacteria and fungi. Ceftazidime is one of third generation cephalosporins groups of antibiotecs, characterized by its broad spectrum on bacteria in general and particularly on Enterobacteriaceae family like Klebsiella spp. Method: Diverse clinical samples of Klebsilla pneumoniae were isolated from several hospitals in Baghdad – Iraq and ZrO2 nanoparticles was investigated against it. Ceftazidime was also investigated against K. pneumoniae. Both of ZrO2 nanoparticles and ceftazidime were mixed together and investigated aga
... Show More