Poverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distance (ED) was used to compare the two methods and the research conclude that the SICA method is better than Ridge estimator with Big Data conditions.
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreAbstract :
The study aims at building a mathematical model for the aggregate production planning for Baghdad soft drinks company. The study is based on a set of aggregate planning strategies (Control of working hours, storage level control strategy) for the purpose of exploiting the resources and productive capacities available in an optimal manner and minimizing production costs by using (Matlab) program. The most important finding of the research is the importance of exploiting during the available time of production capacity. In the months when the demand is less than the production capacity available for investment. In the subsequent months when the demand exceeds the available energy and to minimize the use of overti
... Show MoreThe Purpose of this study is mainly to improve the competitive position of products economic units using technique target cost and method reverse engineering and through the application of technique and style on one of the public sector companies (general company for vegetable oils) which are important in the detection of prices accepted in the market for items similar products and processing the problem of high cost which attract managerial and technical leadership to the weakness that need to be improved through the introduction of new innovative solutions which make appropriate change to satisfy the needs of consumers in a cheaper way to affect the decisions of private customer to buy , especially of purchase private economic units to
... Show MoreThe majority of statisticians, if not most of them, are primarily concerned with the theoretical aspects of their field of work rather than their application to the practical aspects. Its importance as well as its direct impact on the development of various sciences. Although the theoretical aspect is the first and decisive basis in determining the degree of accuracy of any research work, we always emphasize the importance of the applied aspects that are clear to everyone, as well as its direct impact on the development of different sciences. The measurements of public opinion is one of the most important aspects of the application of statistics, which has taken today, a global resonance and has become a global language that everyone can
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
This research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narr
... Show MoreThe current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz