Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to analyze time series based on current values to predict the series values in the future without relying on the past or historical values of the studied series. The research questions in this study are formulated thus: What are the trends in the patterns of urban land use functions in Al-Najaf, Iraq, between 2005 to 2015? How can the values of the changes be predicted for the year 2025? The hypothesis is based on the increasing spatial functional change of land use patterns in the city during the study period due to various economic and social factors. Making accurate predictions of the size of spatial changes motivates this study as a guide to urban management towards developing possible solutions to address the effects of this change, as well as the need to understand its causes and future upward trends. The contribution of this article is the presented outlook for spatial functions for the next 10 years. The computations using the Markov chain model will enable management to understand future relations and develop appropriate policies to reduce the hazards of unplanned changes in the city. Results show that residential posts, slums, and commercial activities are getting worse, while change values for industrial functions and other things are going down.
In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
The integration of decision-making will lead to the robust of its decisions, and then determination optimum inventory level to the required materials to produce and reduce the total cost by the cooperation of purchasing department with inventory department and also with other company,s departments. Two models are suggested to determine Optimum Inventory Level (OIL), the first model (OIL-model 1) assumed that the inventory level for materials quantities equal to the required materials, while the second model (OIL-model 2) assumed that the inventory level for materials quantities more than the required materials for the next period. &nb
... Show MoreSurveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion