Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to analyze time series based on current values to predict the series values in the future without relying on the past or historical values of the studied series. The research questions in this study are formulated thus: What are the trends in the patterns of urban land use functions in Al-Najaf, Iraq, between 2005 to 2015? How can the values of the changes be predicted for the year 2025? The hypothesis is based on the increasing spatial functional change of land use patterns in the city during the study period due to various economic and social factors. Making accurate predictions of the size of spatial changes motivates this study as a guide to urban management towards developing possible solutions to address the effects of this change, as well as the need to understand its causes and future upward trends. The contribution of this article is the presented outlook for spatial functions for the next 10 years. The computations using the Markov chain model will enable management to understand future relations and develop appropriate policies to reduce the hazards of unplanned changes in the city. Results show that residential posts, slums, and commercial activities are getting worse, while change values for industrial functions and other things are going down.
The research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show MoreUrban expansion and its environmental and safety effects are one of the critical information needed for future development planning, safety considerations and environmental management. This work used two methods to monitor urban expansion and it's environmental and safety effects, the first is based on Google Maps for the years 2002 and 2010, and the second was the usage of spatial videos for the year 2013. Although the usage of satellite images is critical to know and investigate the general situation and the total effects of the expansion on a large piece of area, but the Spatial videos do a very detailed fine scale investigation, site conditions regarding both environmental and safety cannot be easily distinguished fr
... Show MoreIn the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur
... Show MoreIn this paper, the topic of forecasting the changes in the value of Iraqi crude oil exports for the period from 2019 to 2025, using the Markov transitional series based on the data of the time series for the period from January 2011 to November 2018, is real data obtained from the published data of the Central Agency Of the Iraqi statistics and the Iraqi Ministry of Oil that the results reached indicate stability in the value of crude oil exports according to the data analyzed and listed in the annex to the research.
Keywords: Using Markov chains
Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More