Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to analyze time series based on current values to predict the series values in the future without relying on the past or historical values of the studied series. The research questions in this study are formulated thus: What are the trends in the patterns of urban land use functions in Al-Najaf, Iraq, between 2005 to 2015? How can the values of the changes be predicted for the year 2025? The hypothesis is based on the increasing spatial functional change of land use patterns in the city during the study period due to various economic and social factors. Making accurate predictions of the size of spatial changes motivates this study as a guide to urban management towards developing possible solutions to address the effects of this change, as well as the need to understand its causes and future upward trends. The contribution of this article is the presented outlook for spatial functions for the next 10 years. The computations using the Markov chain model will enable management to understand future relations and develop appropriate policies to reduce the hazards of unplanned changes in the city. Results show that residential posts, slums, and commercial activities are getting worse, while change values for industrial functions and other things are going down.
Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a
In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show MoreThe improvement of the mechanical soil characteristics of jet grouting technique is very attractive. The jet grouted soil cement columns in soft is a complicated issue because it depends on a number of factors such as, soil nature, mixture, influence among soil and grouting materials, jetting force of nozzle, jet grouting and water flow rate, rotation and lifting speed. This paper discusses the estimation of shear strength parameters of soil-cement column (soilcrete) in soft clayey soil based on the relationships between the unconfined compressive and split tensile strength for the soilcrete and the effect of the jet grouting and water pressure in the values of cohesion and internal f
The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show MoreThis study includes adding chemicals to gypseous soil to improve its collapse characteristics. The collapse behavior of gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59% was investigated using five types of additions (cement dust, powder sodium meta-silicate, powder activated carbon, sodium silicate solution, and granular activated carbon). The soil was mixed by weight with cement dust (10, 20, and 30%), powder sodium meta-silicate (6%), powder activated carbon (10%), sodium silicate solution (3, 6, and 9%), and granular activated carbon (5, 10, and 15%). The collapse potential is reduced by 86, 71, 43, 37, and 35% when 30% cement dust, 6% powder sodium meta-silicate, 10% powder activated
... Show MoreABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release show
... Show MoreIfosfamide (IFO), an alkylating chemotherapy agent, is known for its association with neurotoxicity and encephalopathy. This trial was designed to evaluate the protective action of daidzein (DZN) against IFO-induced neurotoxicity in male rats by determining the difference in certain inflammatory and apoptotic markers in the brain tissue of rats. Twenty-eight Wistar rats, weighing 120-150 g, were divided into four groups of seven rats: Group 1 (Control) received no treatment; Group 2 was orally administered DZN (100 mg/kg/day) for seven days; Group 3 received a single intraperitoneal (IP) dose of IFO (500 mg/kg); Group 4 received oral DZN (100 mg/kg/day) for one week prior to a single IP dose of IFO on the seventh day. Twenty-four hours post
... Show More