The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six different controllers are applied and compared for BPA in WT: type-1 fuzzy logic controller (T1-FLC), interval type-2 fuzzy logic controller (IT2-FLC), interval type-3 fuzzy logic controller (IT3-FLC), optimal hybrid type-1 fuzzy-PID controller (HT1-FPIDC), optimal hybrid type-2 fuzzy-PID controller (HT2-FPIDC), and optimal hybrid type-3 fuzzy-PID controller (HT3-FPIDC). The comparison between Mamdani and Sugeno fuzzy inference systems (FIS) has been applied to find the best inference system. Genetic Algorithm (GA) and Particle swarm optimization (PSO) are used to find the optimal tuning of PID parameters. The results of the 500-kw horizontal axis wind turbine show that Sugeno FIS has higher stability in output power generation than Mamdani FIS. Also, optimal HT3-FPIDC based on Mamdani FIS with PSO provides 19.74 % lower absolute summation error (ASE) than Sugeno FIS in optimal HT2-FLC with PSO and 39.03 % lower ASE than optimal HT1-FLC based on Sugeno FIS with PSO. Finally, the proposed optimal HT3-FPIDC based on PSO and Mamdani FIS provides the optimal results in terms of consistent output power generation at rated value.
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
This study aims to recognize the most common thinking styles and level of the need for cognitive university students , the relation between thinking styles and the need for cognitive, and there are differences according to gender .The sample consists of (250) males and females university students for the academic year (2013-2014), and the researcher uses two scales;" thinking styles scale (Harison &Bramson, 1986), and the need for cognitive scale" (Cacioppo, Petty & Kao , 1996).
The results show that there is difference in the range of the prevalence of the thinking styles among university students , the scientific thinking style is the most common , the students have got the arrange level of the need for cognitive , and there
ABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreHypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreAmong the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show MoreThe last ten years observed a shift enormous scientific in the method and way that it deals professional with the cost accounting and reflected the result those shift enormous scientific of increase the competitive environmental that accompanied the emergence of a modern manufacturing environmental on surface the long roductive life and emergence advanced information technology that give a central focus of his important on client with growing global markets growth on a large scale.
The research aim to define the concept of cost awareness, the concept and methods of strategic cost management and the role of cost awareness for managers of industrial units in strategic of cost managem
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).