Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was used to analyze the relationship between the variables. Results: there was a significant reduction of RI mean, PI mean, and S/D ratio among women with different types of abnormal pregnancy compared with the control group. RI and PI mean levels were significantly lower in women with hydatidiform mole and significantly higher in women with missed miscarriage. Lower left S/D mean level was significantly associated with hydatidiform mole and upper left S/D level was associated significantly with control women. For prediction of missed miscarriage; right and left uterine artery RI shows a sensitivity of 80%, 73.3%, a specificity of 68%, 71.1%, and the highest AUC was 0.78 for both.For prediction of molar pregnancy, right and left uterine artery RI showed a sensitivity of 63% for both, a specificity of 54.4%, 60%, and the highest AUC was 0.58, 0.61 respectively. Conclusions: Uterine artery Doppler ultrasonography at 6-12 weeks of gestation is predictive for early pregnancy complications such as missed abortion, hydatidiform mole, and blighted ovum.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreBackground: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed
... Show MoreSoil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreThe Study aims at evaluating the efficiency of the regional transportation net in Al-mahmoodiya Qadaa center. The bus station of the Qadaa center is suffering from heavy traffic jam, which is due to the ongoing movement of the adjacent provinces, particularly the small cities. They vary in the degree of their link by the regional transportation net that links the province with the centers of big cities. That affects the traffic flow of the civilians of these cities and their daily activities in hierarchical way To achieve the purpose of the study, a questionnaire has been constructed to collect data through selecting a random sample including the passengers who are coming to the bus station in Al-Mahmoodiya center to know the flo
... Show MoreSome auditors may think that the audit process ends with discovering misstatements and informing management about them, while the discovery of misstatements may be classified by some as the first step in the phase of separating these distortions, as the auditor should collect these misstatements, evaluate them and detail them into misstatements involving errors or misstatements involving fraud Then evaluating it to material or immaterial according to what was stated in the international auditing standards and directing management to amend the essential ones. The importance of this research lies in identifying the concept of distortions and their types, identifying the method of evaluating distortions into substantial and non-essent
... Show MoreResearch includes evaluation of projects implemented and which entered into trial operation period in accordance with the evaluation criteria and of (cost, quality and time) to determine the size deviations gap for the sample of projects during the years of assessment (2011-2012-2013-2014) of each of the three evaluation criteria, and then followed by a calculation the size of the overall gap to the problem based on the research problem to determine deviations from the specific implementation of each project by answering several questions to answer turns out the reasons for these deviations occur.
The importance of research Focus on the evaluation of received projects from contractors executing the projec
... Show MoreThe research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show More