Researcher Image
کژين موسى ابراهيم - Kejeen M. Ibrahim
PhD - assistant lecturer
College of Education for Pure Sciences (Ibn Al-Haitham) , Department of Physics
[email protected]
Publication Date
Tue Apr 05 2022
Journal Name
Nano Hybrids And Composites
Structural and Optical Properties of ZnO Nanostructures Synthesized by Hydrothermal Method at Different Conditions
...Show More Authors

Zinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso

... Show More
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors
...Show More Authors

The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems' variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.

View Publication
Scopus (36)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Indian Journal Of Natural Sciences
The Numerical and Experimental Work of Chaos System in Three Dimensions Phase Spaceusing Rossler Circuit
...Show More Authors

In this paper, we deal with a dynamical system that can demonstrate a chaotic attractor of Rossleroscillator. We simulate the Rosslerequations numerically then we investigate the model experimentally. Numerically, the Rossler parameter a and b were fixed and c was changed.The evolution of the system exhibits period, period-doubling, second period doubling, and chaos when control parameters are changed. This evolution can be seen by analyze the time series, the bifurcation diagrams and phase space. Experimentally, the evolution of the system exhibited the same numerical behavior by changing the resistance (Rv) in Rossler circuit that represent as control parameter.

Publication Date
Wed Nov 02 2016
Journal Name
Australian Journal Of Basic And Applied Sciences
Full synchronization of 2$\times$ 2 optocouplers network using LEDs
...Show More Authors

The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.

Publication Date
Fri Jan 01 2016
Journal Name
Iraqi J. Sci., Special Issue, Part B
Complex Dynamics in incoherent source with ac-coupled optoelectronic Feedback
...Show More Authors

The appearance of Mixed Mode Oscillations (MMOs) and chaotic spiking in a Light Emitting Diode (LED) with optoelectronic feedback theoretically and experimentally have been reported. The transition between periodic and chaotic mixed-mode states has been investigated by varying feedback strength. In incoherent semiconductor chaotically spiking attractors with optoelectronic feedback have been observed to be the result of canard phenomena in three-dimensional phase space (incomplete homoclinic scenarios).

Preview PDF
No Events Found