heat transfer - fluid flow -heat transfer in mechatronics system- cooling of electronic equipment
heat transfer- thermodynamics -numerical analysis -advanced mathematics
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
The development of the perforated fin had proposed in many studies to enhance the heat transfer from electronic pieces. This paper presents a novel derivative method to find the temperature distribution of the new design (inclined perforated) of the pin fin. Perforated with rectangular section and different angles of inclination was considered. Signum Function is used for modeling the variable heat transfer area. Set of parameters to handle the conduction and convection area were calculated. Degenerate Hypergeometric Equation (DHE) was used for modeling the Complex energy differential equation and then solved by Kummer’s series. In the validation process, Ansys 16.0-Steady State Thermal was used. Two geometric models were consider
... Show More