Introduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro. Materials and Methods: The GFP gene was inserted to a NDV strain to create a recombinant NDV (rNDV- GFP) using reverse genetics technology. The MTT assay was used in evaluating the oncolytic effect of rNDV- GFP on the lung carcinoma NCI-H727 cells. Light and fluorescent microscopy was used to study the cytopathic effects of rNDV-GFP. Results: MTT assay showed that rNDV-GPF inhibited the NCI-H727 tumor cell death in a time-dependent manner. A significant inhibitory effect (78.3%) for rNDV-GPF on cancer cells was observed at 96h in comparison to rNDV (22.7%) and the cytotoxicity rate was directly proportional to the MOI used. Microscopic studies showed rNDV-GPF to induce cytopathic effect post 24 h of infection. Conclusion: The GFP-expressing recombinant NDV strains exhibited encouraging results in terms of tumor growth inhibition. Our research set the groundwork for employing recombinant NDV as an anticancer viral vector.
In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh
... Show Morethe physical paraneters of oxadizole derivaties as donor molecules have been measured the charge transfer and methanol as solvent have been estimated from the electonic spectra
Simple, sensitive and economical spectrophotometric methods have been developed for the determination of cefixime in pure form. This method is based on the reaction of cefixime as n-electron donor with chloranil to give highly colored complex in ethanol which is absorb maximally at 550 nm. Beer's law is obeyed in the concentration ranges 5-250 µg ml-1 with high apparent molar absorptivities of 1.52×103 L.mole-1. cm-1.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
Mass transfer was examined at a stationary rectangular copper electrode (cathode) by using the reduction of cupric ions as the electrochemical reaction. The influence of electrolyte temperature (25, 45, and 65 oC), and cupric ions concentration (4, 8, and 12 mM) on mass transfer coefficient were investigated by using limiting current technique. The mass transfer coefficient and hence the Sherwood number was correlated as Sh =
Abstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show MoreNo. Due to their apparently extreme optical to X-ray properties, Narrow Line Seyfert 1s (NLSy1s) have been considered a special class of active galactic nuclei (AGN). Here, we summarize observational results from different groups to conclude that none of the characteristics that are typically used to define the NLSy1s as a distinct group – from the, nowadays called, Broad Line Seyfert 1s (BLSy1s) – is unique, nor ubiquitous of these particular sources, but shared by the whole Type 1 AGN. Historically, the NLSy1s have been distinguished from the BLSy1s by the narrow width of the broad Hb emission line. The upper limit on the full width at half maximum of this line is 2000kms−1 for NLSy1s, while in BLSy1s it can be of several thousands
... Show MoreThe development of better tools for diagnosis and more accurate prognosis of cancer includes the search for biomarkers; molecules whose presence, absence or change in quantity or structure is associated with a particular tumour or prognosis/therapeutic outcome. While biomarkers need not be functionally relevant, if cell survival, then they could also provide new targets for therapeutic drugs. In recent years attention has been applied to a group of proteins known as cancer testis antigens (CT antigens) [1]. These proteins are products of genes whose expression was normally confined to the testis, yet they are expressed in tumour cells. CT genes are bound to serve a wide array of roles in the testes, which have many highly differentiated cel
... Show More