The concept of bipolar fuzzy ideals in a TM-algebra was introduced and some properties of these ideals are investigated. Also, a few relations between a bipolar fuzzy ideal and T-ideal are discussed. A new bipolar fuzzy set with a homomorphism of TM-algebra is defined. The Cartesian product of bipolar fuzzy T-ideals in Cartesian product TM-algebras is given.
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. In this paper the two sensors are used to monitoring the agriculture condition and detection the changing in the area of plant covers, the stability and calibration of the ETM+ has been monitored extensively since launch although it is not monitored for many years, TM now has a similar system in place to monitor stability and calibration. By referring to statistical values for the classification process, the results indicated that the state of vegetation in 1990 was in the proportion of 42.8%, while this percentage rose to 52.5% for the same study area in
... Show MoreThe study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .