The concept of bipolar fuzzy ideals in a TM-algebra was introduced and some properties of these ideals are investigated. Also, a few relations between a bipolar fuzzy ideal and T-ideal are discussed. A new bipolar fuzzy set with a homomorphism of TM-algebra is defined. The Cartesian product of bipolar fuzzy T-ideals in Cartesian product TM-algebras is given.
In this paper, the concept of a hyper structure KU-algebra is introduced and some related properties are investigated. Also, some types of hyper KU-algebras are studied and the relationship between them is stated. Then a hyper KU-ideal of a hyper structure KU-algebra is studied and a few properties are obtained. Furthermore, the notion of a homomorphism is discussed.
It is known that, the concept of hyper KU-algebras is a generalization of KU-algebras. In this paper, we define cubic (strong, weak,s-weak) hyper KU-ideals of hyper KU-algebras and related properties are investigated.
The study of cohomology groups is one of the most intensive and exciting researches that arises from algebraic topology. Particularly, the dimension of cohomology groups is a highly useful invariant which plays a rigorous role in the geometric classification of associative algebras. This work focuses on the applications of low dimensional cohomology groups. In this regards, the cohomology groups of degree zero and degree one of nilpotent associative algebras in dimension four are described in matrix form.
In this work, we study of the concept of a cubic set of a semigroup in KU-algebra. Firstly, we study a cubic sub KU-semigroup and achieve some results in this notion. And then, we get a relation between a cubic sub KU-semi group and a level set of a cubic set. Moreover, we define some cubic ideals of this structure and we found relationships between these ideals.
2010 AMS Classification. 08A72, 03G25, 06F35
In this paper, we define a cubic bipolar subalgebra, $BCK$-ideal and $Q$-ideal of a $Q$-algebra, and obtain some of their properties and give some examples. Also we define a cubic bipolar fuzzy point, cubic bipolar fuzzy topology, cubic bipolar fuzzy base and for each concept obtained some of its properties.
In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some example
... Show MoreIn this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.
The purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators