During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreBackground: This study aimed to evaluate the effect of zirconia different surface treatments (primer, sandblast with 50μmAl2O3, Er,Cr:YSGG laser) on shear bond strength between zirconia surface and resin cement. Material and methods: Sixty presintered Y-TZP zirconia cylinder specimens (IPS e.max ZirCAD, Ivoclar vivadent) will be fabricated and sintered in high temperature furnace of (1500 C for 8 hours) according to manufacturer’s instructions to the selected size and shape of (5mm. in diameter and 6mm in height). All specimens were ground flat using 600.800.1000.1200, aluminum oxide abrasive paper to obtain a standardized surface roughness. Surface roughness values were then recorded in µm using surface roughness tester (profi
... Show MoreThe main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show MoreA band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
In the present study, an attempt has been made to study the change in water quality of the river in terms of turbidity during lockdown associated with COVID-19. Iraq announced the longest-ever lockdown on 25 March 2020 due to COVID-19 pandemic.
In the absence of ground observations, remote sensing data was adopted, especially during this period. The change in the visible region's spectral reflectance of water in part of the river has been analyzed using the Landsat 8 OLI multispectral remote sensing data at Tigris River, Salah al-Din province (Bayji / near the refinery), Iraq. It was found that the green and red bands are most sensitive and can be used to estimate turbidity. Furthermore, the temporal variation in turbidity was a
... Show MoreThis research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.