FUZZY CONTROLLERS F'OR SINGLE POINT CONTROLLER-I (SPC-l) SYSTEMS
The aim of this paper is to introduce the notion of hyper fuzzy AT-ideals on hyper AT-algebra. Also, hyper fuzzy AT-subalgebras and fuzzy hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras. Furthermore, the fuzzy set theory of the (weak, strong, s-weak) hyper fuzzy ATideals in hyper AT-algebras are applied and the relations among them are obtained.
The concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreIn this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
The aim of this paper is to introduce the definition of a general fuzzy norned space as a generalization of the notion fuzzy normed space after that some illustrative examples are given then basic properties of this space are investigated and proved.
For example when V and U are two general fuzzy normed spaces then the operator is a general fuzzy continuous at u V if and only if u in V implies S(u) in U.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
In this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.