Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
The research aims to identify the reasons that lead to asymmetry of information between economic unity administration and the parties that use accounting information such as shareholders, So, the ability to reach to the solutions that would reduce this problem, these factors have been divided into two types: the first one is the internal factors which represent the administration's desire in order to expand the self-interest of getting the profits and increase the value and competitive entity and investors to obtaining greater returns for their shares, so the second type is the external factors, which represent the failer that occurs in the laws and regula
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm
Iraq is considered one of the countries most susceptible to the negative impacts of climate change. According to international reports, it is classified as among the top five most affected by climate change in the world, leading to economic resource shortages and an increase in water scarcity, which exposes societal stability in Iraq to a threat. This may result in social disintegration and civil conflicts, so climate changes are considered one of the most dangerous crises affecting societal stability in Iraq during this stage. In this context, the research attempts to trace the causes of climate change and their effects on societal stability in Iraq and suggest some necessary measures to confront them in the future. The resea
... Show MoreThis paper describes a number of new interleaving strategies based on the golden section. The new interleavers are called golden relative prime interleavers, golden interleavers, and dithered golden interleavers. The latter two approaches involve sorting a real-valued vector derived from the golden section. Random and so-called “spread” interleavers are also considered. Turbo-code performance results are presented and compared for the various interleaving strategies. Of the interleavers considered, the dithered golden interleaver typically provides the best performance, especially for low code rates and large block sizes. The golden relative prime interleaver is shown to work surprisingly well for high puncture rates. These interleav
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and t
... Show MoreAA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More