Preferred Language
Articles
/
zhZKpYsBVTCNdQwC_NW-
Proposed family speech recognition
...Show More Authors

Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.

Publication Date
Thu Jul 01 2021
Journal Name
Computers & Electrical Engineering
A new proposed statistical feature extraction method in speech emotion recognition
...Show More Authors

View Publication
Scopus (25)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Apr 15 2016
Journal Name
International Journal Of Computer Applications
Hybrid Techniques based Speech Recognition
...Show More Authors

Information processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (

... Show More
View Publication
Crossref
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
YouTube Keyword Search Engine Using Speech Recognition
...Show More Authors

Visual media is a better way to deliver the information than the old way of "reading". For that reason with the wide propagation of multimedia websites, there are large video library’s archives, which came to be a main resource for humans. This research puts its eyes on the existing development in applying classical phrase search methods to a linked vocal transcript and after that it retrieves the video, this an easier way to search any visual media. This system has been implemented using JSP and Java language for searching the speech in the videos

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Isolated Word Speech Recognition Using Mixed Transform
...Show More Authors

Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
Mobile-based Human Emotion Recognition based on Speech and Heart rate
...Show More Authors

Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to   record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Speech Emotion Recognition Using MELBP Variants of Spectrogram Image
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Proposed methods of image recognition depend on the PCA
...Show More Authors

This paper suggest two method of recognition, these methods depend on the extraction of the feature of the principle component analysis when applied on the wavelet domain(multi-wavelet). First method, an idea of increasing the space of recognition, through calculating the eigenstructure of the diagonal sub-image details at five depths of wavelet transform is introduced. The effective eigen range selected here represent the base for image recognition. In second method, an idea of obtaining invariant wavelet space at all projections is presented. A new recursive from that represents invariant space of representing any image resolutions obtained from wavelet transform is adopted. In this way, all the major problems that effect the image and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Proposed Speech Analyses Method Using the Multiwavelet Transform
...Show More Authors

  Speech is the first invented way of communication that human used age before the invention of writing. In this paper, proposed method for speech analyses to extract features by using multiwavelet Transform (Repeated Row Preprocessing).The proposed system depends on the Euclidian differences of the coefficients of the multiwavelet Transform to determine the beast features of speech recognition. Each sample value in the reference file is computed by taking the average value of four samples for the same data (four speakers for the same phoneme). The result of the input data to every frame value in the reference file using the Euclidian distance to determine the frame with the minimum distance is said to be the "Best Match". Simulatio

... Show More
View Publication Preview PDF