Preferred Language
Articles
/
zhYEBYcBVTCNdQwCIi1e
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Cogent Engineering
On the computational aspects of Charlier polynomials
...Show More Authors

View Publication
Scopus (35)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
International Journal Of Contemporary Mathematical Sciences
Approximation by Convex Polynomials in Weighted Spaces
...Show More Authors

Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity

Publication Date
Mon Mar 20 2023
Journal Name
2023 International Conference On Information Technology, Applied Mathematics And Statistics (icitams)
Hybrid Color Image Compression Using Signals Decomposition with Lossy and Lossless Coding Schemes
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jun 09 2020
Journal Name
Article In Journal Of Engineering Science And Technology
English Numbers Recognition Based on Sign Language Using Line-Slope Features and PSO-DBN Optimization Method
...Show More Authors

View Publication
Scopus (3)
Scopus
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Fast Temporal Video Segmentation Based on Krawtchouk-Tchebichef Moments
...Show More Authors

View Publication
Scopus (41)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Robust Estimators for Estimate parameters logistic regression model to Binary Response – using simulation)).
...Show More Authors

 

 The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.                                                          

Among the problems that appear as a result of the use of some statistical methods I

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 13 2020
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
Robust Approach of Optimal Control for DC Motor in Robotic Arm System using Matlab Environment
...Show More Authors

Modern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented.  The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between Methods of Laplace Estimators and the Robust Huber for Estimate parameters logistic regression model
...Show More Authors

The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .                                                

The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result.    &nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 07 2019
Journal Name
Construction Innovation
A hybrid conceptual model for BIM in FM
...Show More Authors
Purpose

The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.

Design/methodology/approach
... Show More
View Publication
Scopus (32)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (11)
Crossref