Pharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series of experiments were conducted at constant mixing speed (300 revolutions per minute) to evaluate the effect of experimental factors likes, adsorption time, pH of diclofenac solution, diclofenac initial concentration, and dosage of activated carbon on removal efficiency. The design of experiments (version 13 Stat-Ease) was implemented using the central composite method to define the optimum effect of the process factors on the removal efficiency. The analysis of variance showed that the quadratic model for the experiment was significant with a very low probability value (P- value < 0.0001). The adjusted R2 of the model was 0.9826 and the predicted R2 was 0.9574. Whereas the optimum conditions suggested by the model for the process variable were found to be 150 min, 3.25 pH, 30 mg/L, 0.267g, for adsorption time, pH of diclofenac solution, diclofenac initial concentration, a dosage of activated carbon, respectively and the maximum removal efficiency was found to be 94.6%. The data obtained from the experiments were fitted with Langmuir and Freundlich models and the results show that the data was well fitted Langmuir model with R2 = 0.9685 as compared to the Freundlich model which has R2 = 0.93249. Likewise, the data was analyzed by pseudo first and second-order kinetic models and the results show that the adsorption on apricot-activated carbon was well adequate with the pseudo-second-order model.
The esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
A new ligand 2,3-dihydrobenzo [d] thiazole-2-carboxylic acid (L) has been prepared from the reaction of ortho amino phenyl thiol with dichloroacetic acid in mole ratio (1:1). It has been characterized by elemental analysis (C.H.N.), IR, UV- Vis.spectraand 1H, 13C-NMR. A new series complexes of the bivalent ions (Co, Ni, Cu, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural has been established by elemental analysis (C.H.N.), IR, UV-Vis. spectra, molar conductivity, atomic absorption and magnetic susceptibility measurements. The synthesized complexes were prepared in (1:2) ratio correspond to (Co(II), Ni(II), Cu(II), Pd(II), Cd(II), Hg(II) and Pb(II) complexes while in case Cr(III) complex is
... Show MoreThe manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scan
... Show MoreThis search include the synthesis of some new 1,3-oxazepine derivatives have been prepared, starting from reaction of L-ascorbic acid with dry acetone in presence of dry hydrogen chloride afforded the acetal (I). Treatment of the latter with p-nitrobenzoyl chloride in dry pyridine yielded the ester (II) which was dissolved in (65%) acetic acid in absolute ethanol yielded the glycol (III). The reaction of the glycol (III) with sodium periodate in distilled water at room temperature produced the aldehyde (IV). The compound (V) [2-amino-5-mercapato-1,3,4-thiadiazole] was prepared through the reaction of thiosemicarbazide with carbon disulphide (CS2) in entity of anhydrous (Na2CO3) in (abs. ethanol ). Compound (VI) [2-(5-mercapto-1,3,4-thiadiaz
... Show MoreA series of coumarin derivatives linked to amino acid ester side chains were synthesized and evaluated of their antibacterial and antifungal activity. The coumarin derivatives was alkylated by the ethyl bromoacetate and then using potassium carbonate to get alkylated hymecromone. Conventional solution method for amide bond formation was used as a coupling method between the carboxy-protected amino acids with acetic acid side chain of coumarin derivatives. The DCC/ HOBt coupling reagents were used for peptide bond formation. The proposed analogues were successfully synthesized and their structural formulas were consistent with the proposed struct
... Show MoreCoupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show MoreMost approaches to combat antibiotic resistant bacteria concentrate on discovering new antibiotics or modifying existing ones. However, one of the most promising alternatives is the use of bacteriophages. This study was focused on the isolation of bacteriophages that are specific to some of commonly human pathogens namely E. coli, Streptococcus pyogenes, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella spp. and Klebsiella pneumoniae. These bacteriophages were isolated from sewages that were collected from four different locations in Kirkuk City. Apart from S. pyogenes, bacteriophages specific to all tested bacteria were successfully isolated and tested for their effectiveness by spot test. The most effective
... Show MoreThis study was done to determine the effect of watery and alcoholic extracts of Elettaria cardamomum on growth of bacteria isolated from Otitis media Infections which are : Pseudomonas aeruginosa , Staphylococcus aureus and Klebsilla spp. The biochemical analysis revealed that watery extracts of Elettaria cardamomum contains: Glycosides, Alkaloids, Saponines, Tannins, and Volatile oils, ( This compound is Soluble in water ) , while the alcoholic extracts contains : (in addition to the above mentioned compounds ) Phenols , Resins , Flavonids and Coumarins. ( This compound is Soluble in organic solutions ). To study the e
... Show More