This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show MoreWith the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security. This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for
... Show More<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MorePalm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Time series have gained great importance and have been applied in a manner in the economic, financial, health and social fields and used in the analysis through studying the changes and forecasting the future of the phenomenon. One of the most important models of the black box is the "ARMAX" model, which is a mixed model consisting of self-regression with moving averages with external inputs. It consists of several stages, namely determining the rank of the model and the process of estimating the parameters of the model and then the prediction process to know the amount of compensation granted to workers in the future in order to fulfil the future obligations of the Fund. , And using the regular least squares method and the frequ
... Show MoreUncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image
... Show MoreWater scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreAbstract:
In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach
... Show More