The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.
This paper deals with a method called Statistical Energy Analysis that can be applied to the mechanical and acoustical systems like buildings, bridges and aircrafts …etc. S.E.A as a tool can be applied to the resonant systems in the circumstances of high frequency or/and complex structure». The parameters of S.E.A such as coupling loss factor, internal loss factor, modal density and input power are clarified in this work ; coupled plate sub-systems and explanations are presented for these parameters. The developed system is assumed to be resonant, conservative, linear and there is an equipartition of energy between all the resonant modes within a given frequency band in a given sub-system. The aim of th
... Show MoreA new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreHomomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
Background Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show MoreAnaerobic digestion is a technology widely used for treatment of organic waste for biogas production as a source for clean energy. In this study, poultry house wastes (PHW) material was examined as a source for biogas production. The effects of inoculum addition, pretreatment of the substrate, and temperature on the biogas production were taken into full consideration. Results revealed that the effect of inoculum addition was more significant than the alkaline pretreatment of raw waste materials. The biogas recovery from inoculated waste materials exceeds its production from wastes without inoculation by approximately 70% at mesophilic conditions. Whereby, the increase of biogas recovery from pretreated wastes was by 20% higher than its
... Show More
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |