Currently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the bipedal movement is unstable. The influences of passive or active gait on energy demand are also discussed. Most studies are explored based on the zero moment. Furthermore, a review of the knowledge on the specific locomotor characteristics of birds, whose kinematics are derived from dinosaurs and provide them with both walking and running abilities, is presented. Secondly, many types of bipedal robot solutions are reviewed, which include nature-inspired robots (human-like and birdlike robots) and innovative robots using new heuristic, synthetic ideas for locomotion. Totally 45 robotic solutions are gathered by thebibliographic search method. Atlas was mentioned as one of the most perfect human-like robots, while the birdlike robot cases were Cassie and Digit. Innovative robots are presented, such asslider robot without knees, robots with rotating feet (3 and 4 degrees of freedom), and the hybrid robot Leo, which can walk on surfaces and fly. In particular, the paper describes in detail the robots’ propulsion systems (electric, hydraulic), the structure of the lower limb (serial, parallel, mixed mechanisms), the types and structures of control and sensor systems, and the energy efficiency of the robots. Terrain roughness recognition systems using different sensor systems based on light detection and ranging or multiple cameras are introduced. A comparison of performance, control and sensor systems, drive systems, and achievements of known human-like and birdlike robots is provided. Thirdly, for the first time, the review comments on the future of bipedal robots in relation to the concepts of conventional (natural bipedal) and synthetic unconventional gait. We critically assess and compare prospective directions for further research that involve the development of navigation systems, artificial intelligence, collaboration with humans, areas for the development of bipedal robot applications in everyday life, therapy, and industry.
In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen
... Show MoreObjective(s): to determine the effectiveness of instruction intervention upon multipara women's practices to
control stress incontinence.
Methodology: A quasi-experimental study was carried out from (2nd) April, 2010 to 15th June, 2010. Nonprobability
(purposive sample) of (60) multiparous women was selected from Baghdad Teaching Hospital and AlElwia
Maternity Teaching Hospital in Baghdad city, the sample was divided into two groups (30) women were
considered as a study group, and another (30) were considered as the control group. An instructional intervention
was applied on the study group, while the intervention was not applied on control group. A questionnaire was
resolve as a tool of data collection to suit the p
The aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel
... Show MoreObjective: determine the effectiveness of an education program on youth's level of awareness towards
household waste control.
Methodology: A Quazi-experimental study was conducted. Non-probability (quota sample) of (80) young
persons is selected from Baghdad Governorate. They are divided into two equal groups of (40) subjects for the
study group which is exposed to the household waste control educational program. The remaining is the
control group which is not exposed to the educational program.
Results: The findings of the study indicated that youth of the study group have got benefits from the
implementation of the educational program towards household waste control and change has occurred to
their awareness tow
The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show More
his project try to explain the using ability of spatial techniques for land cover change detection on regional level with the time parameter and did select for explain these abilities study case (Hewaizah marsh ) . this area apply to many big changes with the time. These changes made action on characters and behaviors of this area as well as all activities in it . This Project concerting to recognize the Using importance of remote sensing and GIS Methodology in data collecting for the changes of land use and the methodology for the analyses and getting the results for the next using as a base data for development and drawing the plans as well as in regional planning .This project focus on practical
... Show MoreBackground: Proper cleaning and shaping of the whole root canal space have been recognized as a real challenge, particularly in oval-shaped canals.This in vitro study was conducted to evaluate and compare the efficiency of different instrumentation systems in removing of dentin debris at three thirds of oval-shaped root canals and to compare the percentage of remaining dentin debris among the three thirds for each instrumentation system. Materials and methods: Fifty freshly extracted human mandibular molars with single straight oval-shaped distal root canals were randomly divided into five groups of ten teeth each. Group One: instrumentation with ProTaper Universal hand instruments, Group Two: instrumentation with ProTaper Universal rotary
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreNanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show MoreThis research dealt with shedding light on the nature of material misrepresentations, in addition to knowing the extent to which the quality of accounting information systems contributes to reducing material misrepresentations On the theoretical side, a number of sources were relied upon in dealing with the research problem and presentation of the topic, while in the practical side, it was relied on the questionnaire form, where the research sample was (accountants and auditors), where 50 forms were distributed and 50 were received, and the data was analyzed and hypotheses tested through the program Statistical spss to show the relationship between the variables. The research reached a number of conclusions, the most important of which is t
... Show More