Thin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV for pure In2O3 declare drastic reduction as Eu dopant introduce to the indium oxide and then return to increase with further increase of doping ratio. The best figure of merit of the films was achieved for pure sample.
In this research, the effect of electrode material on the parameters of the produced DBD plasma was investigated. First, a non-thermal plasma was created by applying a 15 kV AC voltage between two electrodes and using a glass plate as a dielectric barrier in the design Dielectric Barrier Discharge (DBD) plasma system. The obtained plasma spectrum was analyzed using optical emission spectroscopy to calculate plasma parameters by the Boltzmann plot method. Electrodes made of copper, aluminium, and stainless steel were employed in this research. Electron temperature ( ) for copper, aluminium, and stainless steel was found to be (1.398 eV), (1.093 eV) and (1.009 eV), respectively.
In this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a fu
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreExperimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreIn this study, plastic wastes named (PET and PVC) were used to prepare polymer matrix composite (PMC) which can be used in different applications. Composite materials were prepared by mixing unsaturated polyester resin (UP) with plastic wastes, two types of plastic waste were used in this work included polyethylene-terephthalate (PET) and Polyvinyl chloride (PVC) with various weight fractions (0, 5,10,15, 20 and 25%) added as a filler in flakes form. In this work, some of the tests that were carried out included (tensile, bending, and compressive strength) as mechanical tests, in addition to (thermal conductivity and water absorption) as physical tests. The values of tensile, compressive strength and Young's modulus of UP increased after
... Show MoreThe efficiency of solar energy absorption in solar heaters is increased by the use of selective absorption coating that possesses high absorption of solar radiation in the UV-visible spectrum as well as low emission at the operating temperature in the infrared region. In this work, novel selective coatings were synthesized by improving the selectivity of chromium oxide (Cr2O3) nanoparticles by doping with carbon nanoparticles using the exploding wire technique for carbon rods by high current in suspended Cr2O3 particles. The structural properties and surface topography were studied by XRD and FE-SEM, which illustrate the carbon-coated Cr2O3 nanoparticles. The prepar
... Show MoreThe largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show More