Thin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV for pure In2O3 declare drastic reduction as Eu dopant introduce to the indium oxide and then return to increase with further increase of doping ratio. The best figure of merit of the films was achieved for pure sample.
This study presents a comprehensive set of laboratory works for the examined soil layers extracted from Baghdad city (specifically from Alkadhimya, Alaitaifiya, and Alhurriya) to illustrate their engineering properties. The researchers have adopted the unified soil classification system for soil classification purposes. Also, the direct shear test was performed for soil samples with various degrees of saturation (0%, 25%, 50%, 75%, and 100%). The test results have shown a significant reduction in cohesion property with higher moisture content within soil samples. Also, a noticeable reduction in angle of internal friction value has occurred with such changes. Furthermore, it has been found that the bearing capacity of unsaturated soi
... Show MoreThe work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so
In this research the effect of cooling rate and mold type on mechanical properties of the eutectic
and hypoeutectic (Al-Si) alloys has been studied. The alloys used in this research work were (Al- 12.6%Si
alloy) and (Al- 7%Si alloy).The two alloys have been melted and poured in two types of molds with
different cooling rates. One of them was a sand mold and the other was metal mold. Mechanical tests
(hardness, tensile test and impact test) were carried out on the specimens. Also the metallographic
examination was performed.
It has been found that the values of hardness for the alloys(Al-12.6%Si and Al-7%Si) which poured in
metal mold is greater than the values of hardness for the same alloy when it poured in a heated
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show MoreIn this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show MoreA laboratory experiment was carried out and repeated at field of College of Agricultural Engineering Sciences, University of Baghdad in 2017. First factor was three cultivars of lupine 'Giza-1', 'Giza-2' and 'Hamburg'. Second factor was three seed weights (lower weight, medium weight and higher weight) which was following the cultivars factor. Nested design was used. Results showed supremacy of 'Giza-1' cultivar significantly and gave higher germination ratio, radical length, seedling dry weight, seedling vigour index, field emergence ratio, plant height and number of leaves per plant. The treatment ('Giza-1'×higher seed weight) was supremacy significantly and gave higher germination ratio, radical length, plumule length, and seedling vigo
... Show MoreSlurry-infiltrated fibrous concrete (SIFCON) is a special type of concrete that has great strength, as well as high ductility. However, the unit weight is high, which exceeds the unit weight of fiber-reinforced concrete, because of the high fiber content. This research aims to verify the compressive and flexural strength, as well as the density of SIFCON when using two different fibers (steel and polyolefin). Sometimes mono type of fiber steel or polyolefin, sometimes by hybridizing two types of fiber steel + polyplefin. Volume fraction (6% for all species) was used. Hook-end steel fiber and polyolefin fiber are used. With hybridization, a total volume fraction of 6% was used, which
This research focuses on the characteristics of polyvinyl alcohol and starch polymer blends doping with Rhodamine-B. The polymer blends were prepared using the solution cast method, which comprises 1:1(wt. /wt.). The polymer blends of PVA and starch with had different ratios of glycerin 0, 25, 30, 35, and 40 % wt. The ratio of 30% wt of glycerin was found to be the most suitable mechanical properties by strength and elasticity. The polymer blend of 1:1 wt ratios of starch/PVA and 30% wt of glycerin were doped with different ratios of Rhoda mine-B dye 0, 1, 2, 3, 4, 5, and 6% wt and the electrical properties of doping biodegradable blends were studied. The ratio of Rhodamine-B 5% wt to the polymer blends showed hi
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show More