Remote sensing data are increasingly being used in digital archaeology for the potential non-invasive detection of archaeological remains. The purpose of this research is to evaluate the capability of standalone (LiDAR and aerial photogrammetry) and integration/fusion remote sensing approaches in improving the prospecting and interpretation of archaeological remains in Cahokia’s Grand Plaza. Cahokia Mounds is an ancient area; it was the largest settlement of the Mississippian culture located in southwestern Illinois, USA. There are a limited number of studies combining LiDAR and aerial photogrammetry to extract archaeological features. This article, therefore, combines LiDAR with photogrammetric data to create new datasets and investigate whether the new data can enhance the detection of archaeological/ demolished structures in comparison to the standalone approaches. The investigations are implemented based on the hillshade, gradient, and sky view factor visual analysis techniques, which have various merits in revealing topographic features. The outcomes of this research illustrate that combining data derived from different sources can not only confirm the detection of remains but can also reveal more remains than standalone approaches. This study demonstrates that the use of combination remote sensing approaches provides archaeologists with another powerful tool for site analysis.
Today many people suffering from health problems like dysfunction in lungs and cardiac. These problems often require surveillance and follow up to save a patient's health, besides control diseases before progression. For that, this work has been proposed to design and developed a remote patient surveillance system, which deals with 4 medical signs (temperature, SPO2, heart rate, and Electrocardiogram ECG. An adaptive filter has been used to remove any noise from the signal, also, a simple and fast search algorithm has been designed to find the features of ECG signal such as Q,R,S, and T waves. The system performs analysis for medical signs that are used to detected abnormal values. Besides, it sends data to the Base-Stati
... Show MoreThe objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
Peer-Reviewed Journal
Due to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show More