Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the presence of these components enriches the system's dynamic behavior, resulting in bi-stable behavior.
In this paper, a mathematical model consisting of the two harmful
phytoplankton interacting with a herbivorous zooplankton is proposed and studied.
The existence of all possible equilibrium points is carried out. The dynamical
behaviors of the model system around biologically feasible equilibrium points are
studied. Suitable Lyapunov functions are used to construct the basins of attractions
of those points. Conditions for which the proposed model persists are established.
The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally,
to confirm our obtained analytical results and specify the vital parameters, numerical
simulations are used for a hypothetical set of parameter values.
When the guard honey bees, Apis mellifera L., form a clump at the hive entrance or on the flight board, the oriental hornet, Vespa orientails L., either creeps toward the clump or hovers over it in order to take a bee. Once the hornet creeps, only few bees facing the hornet become alert, rock their heads and antennae, open their wings, and take a posture of defense. The rest of the clump stays listless without any signal of concern. However, the clump stays dense and the defending bees do not detach themselves neither from the rest of the clump nor from each other. For this reason, it is very difficult for the hornet to grab a bee unless the latter makes a “mistake” by detaching herself from other adjacent bees. If the hornet grabs s
... Show MoreIn this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E0 the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E1 and E2 happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened.
In this paper, a mathematical model consisting of harmful phytoplankton and two competing zooplankton is proposed and studied. The existence of all possible equilibrium points is carried out. The dynamical behaviors of the model system around biologically feasible equilibrium points are studied. Suitable Lyapunov functions are used to construct the basins of attractions of those points. Conditions for which the proposed model persists are established. The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally, to confirm our obtained analytical results and specify the vital parameters, numerical simulations are used for a hypothetical set of parameter values.
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
The food web is a crucial conceptual tool for understanding the dynamics of energy transfer in an ecosystem, as well as the feeding relationships among species within a community. It also reveals species interactions and community structure. As a result, an ecological food web system with two predators competing for prey while experiencing fear was developed and studied. The properties of the solution of the system were determined, and all potential equilibrium points were identified. The dynamic behavior in their immediate surroundings was examined both locally and globally. The system’s persistence demands were calculated, and all conceivable forms of local bifurcations were investigated. With the aid of MATLAB, a numerical simu
... Show MoreIn this paper, the aquatic food chain model, consisting of Phytoplankton, Zooplankton, and Fish, in the contaminated environment is proposed and studied. Modified Leslie–Gower model with Holling type IV functional response are used to describe the growth of Fish and the food transition throughout the food chain, respectively. The toxic substance affects directly the Phytoplankton and indirectly the other species. The local stability analysis of all possible equilibrium points is done. The persistence conditions of the model are established. The basin of attraction for each point is specified using the Lyapunov function. Bifurcation analysis near the coexistence equilibrium point is investigated. Detecting the existence of chao
... Show MoreIn this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreIn this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show More