In the current study, new derivatives were synthesized by reaction of N-hydroxyphthalimide with chloro acetyl chloride in the presence of Et3N as a base to form 1,3-dioxoisoindolin-2-yl 2-chloroacetate (B1), which in turn enters several reactions with different amines where it interacts with primary amines to give 1,3-dioxoisoindolin-2-yl acetate derivatives (B2-B4) in basic medium, in the same way it interacts with these amines but with adding KNCS to form thiourea derivatives (B5-B7). It also reacts with diamines to give bis(azanediyl) derivatives (compounds B8-B10). The prepared derivatives were diagnosed using infrared FTIR and 1HNMR,13CNMR for some derivatives. Compounds B4, B5 and B9 were measured as corrosion inhibitors the inhibition efficiency varied from 85% to 99% and thermodynamic functions, i.e. Gibbs free energy, activation energy, enthalpy, entropy, were calculated for the derivatives at a concentration of (50 ppm) when mixed with carbon steel as additives and exposing the plate to an acidic medium of hydrochloric acid at a concentration of (1M) in different temperatures. The results revealed that as the temperature increases, the inhibition efficiency decreases.
Copper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreMany approaches have been developed over time to counter the bioavailability limitations of poorly soluble drugs. With advances in nanotechnology in recent decades, this issue has been approached through the formulation of drugs as nanocrystals. Nanocrystals consist of pure drug(s) and a minimum of surface active agent(s) required for stabilization. They are carrier-free submicron colloidal drug delivery systems with a mean particle size typically in the range of 200 - 500 nm. By reducing particle size to nanoscale, the surface area available for dissolution is increased, and thus bioavailability is enhanced. Drug nanocrystals constitute a versatile formulation approach to enhance the pharmacokinetic and pharmacodynamic properties of poorly
... Show MoreRoughness length is one of the key variables in micrometeorological studies and environmental studies in regards to describing development of cities and urban environments. By utilizing the three dimensions ultrasonic anemometer installed at Mustansiriyah university, we determined the rate of the height of the rough elements (trees, buildings and bridges) to the surrounding area of the university for a radius of 1 km. After this, we calculated the zero-plane displacement length of eight sections and calculated the length of surface roughness. The results proved that the ranges of the variables above are ZH (9.2-13.8) m, Zd (4.3-8.1) m and Zo (0.24-0.48) m.
This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More