The current research seeks to identify the most important humanitarian issues of a sacred and very important group in all the heavenly religions and human societies, namely the elderly, to identify their significant problems and health problems, and What are the effects of these problems on their mental health and which is the ultimate goal of human resources in All parts of the world? The study relied on what is available from the sources in the literature starting from the messages of heaven and the Islamic religion followed with humanitarian, social, legal and psychological postulates. The research included four systematic chapters included the definition research and identification of the problem, importance, objectives and terminolo
... Show MoreReceive money laundering phenomenon of interest to researchers and scholars on different intellectual orientation of economic or political or other, as this process is gaining paramount importance in light of business and increase the number of banks in the province of Kurdistan of Iraq and Erbil in particular and in the presence of openness developments chaotic economic and there are no factors encourage money laundering operation because of the presence of the hidden economy and the weakness of the banking and legal measures to combat them, and on this basis there is a need to examine money laundering operation in the province of Arbil, to indicate the presence or absence of a money laundering operation in working in the provin
... Show MoreObjective: Assessment of health problems and identify demographical information to elderly. Methodology:
it is a descriptive study, data were collected by the researchers depended on the direct interview with the
elderly by using the study instrument (questionnaire) as well as review the records of the geriatric.
Results: The majority of study sample (66%) were males and (24.3%) were within age group (70-74) years,
(44.7%) were widows, and (41.7%) did not read and write. This study applied the international classification
of diseases(short-table) in (11) items, which stated that most of the elderly were complaining from
health problems: debility of hearing (80.65%), eczema or allergies (69.35%), debility of vision (66.9
In this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreObjectives: to assess nurses' knowledge toward infection control measures for hepatitis a virus in hemodialysis
units and to detemine the relationship between nurses' knowledge and their demographical characteristics.
%eihs:::°mg:rA5th:e;:#tt£:eoscTodbyerw9¥,C22;5];e.d°utathem°dialysisunitsofBaghdadTeachingHospha|sstated
A non-probability `tturposive" sample of (51) nurses, who were working in hemodialysis units were selected
from Baghdad teaching hosphals. The data were collected through the use of constructed questionnaire, which
consists of two parts (I) Demographic data fom that consists of 10 items and (2) Nurses' knowledge form that
consists of 6 sections contain 79 items, by means of direct interview techniq
In this paper, we extend the work of our proplem in uniformly convex Banach spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions for the controllability to general formulation of nonlinear boundary control problems in reflexive Banach spaces are introduced. The results are obtained by using fixed point theorem that deals with nonexpanisive mapping defined on a set has normal structure and strongly continuous semigroup theory. An application is given to illustrate the importance of the results.