Preferred Language
Articles
/
zBYxvooBVTCNdQwCxqRF
Simple Flight Simulator Model
...Show More Authors

Pilots are trained using computerized flight simulators. A flight simulator is a training system where pilots can acquire flying skills without need to practice on a real airplane. Simulators are used by professional pilots to practice flying strategies under emergency or hazardous conditions, or to train on new aircraft types. In this study a framework for flight simulation is presented and the layout of an implemented program is described. The calculations were based on simple theoretical approach. The implementation was based on utilizing some of utilities supported by ActiveX, DirectX and OpenGL written in Visual C++. The main design consideration is to build a simple flight simulation program can operate without need to high computer environment specifications.

View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Fuzzy-assignment Model by Using Linguistic Variables
...Show More Authors

      This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2009
Journal Name
مجلة العلوم الاحصائية
Robust Estimator for Semiparametric Generalized Additive Model
...Show More Authors

Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.

View Publication Preview PDF
Publication Date
Tue Oct 22 2024
Journal Name
Iraqi Statisticians Journal
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
CFD Simulation Model of Salt Wedge Propagation
...Show More Authors

This study aims to numerically simulate the flow of the salt wedge by using computational fluid dynamics, CFD. The accuracy of the numerical simulation model was assessed against published laboratory data. Twelve CFD model runs were conducted under the same laboratory conditions. The results showed that the propagation of the salt wedge is inversely proportional to the applied freshwater discharge and the bed slope of the flume.  The maximum propagation is obtained at the lowest discharge value and the minimum slope of the flume. The comparison between the published laboratory results and numerical simulation shows a good agreement. The range of the relative error varies between 0 and 16% with an average of 2% and a roo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Physical Mesomechanics Of Condensed Matter: Physical Principles Of Multiscale Structure Formation And The Mechanisms Of Nonlinear Behavior: Meso2022
Optimal control strategy applied to diabetes model
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Agricultural And Statistical Sciences
ON ERROR DISTRIBUTION WITH SINGLE INDEX MODEL
...Show More Authors

In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.

Scopus
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Model Estimated Building in Finite Population Sampling
...Show More Authors

Abstract

The population is sets of vocabulary common in character or characters and it’s study subject or research . statistically , this sets is called study population (or abridgement population ) such as set of person or trees of special kind of fruits or animals or product  any country for any commodity through infinite temporal period term ... etc.

The population maybe finite if we can enclose the number of its members such as the students of finite school grade . and maybe infinite if we can not enclose the number of it is members such as stars or aquatic creatures in the sea . when we study any character for population the statistical data is concentrate by two metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 31 2023
Journal Name
International Journal Of Sustainable Development And Planning
Prediction of Formal Transformations in City Structure (Kufa as a Model) Based on the Cellular Automation Model and Markov Chains
...Show More Authors

The research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
The Migration Effect on an Eco-toxicant Model
...Show More Authors

This paper proposes and studies an ecotoxicant system with Lotka-Volterra functional response for predation including prey protective region. The equilibrium points and the stability of this model have been investigated analytically both locally and globally. Finally, numerical simulations and graphical representations have been utilized to support our analytical findings

Scopus (1)
Scopus Crossref
Publication Date
Tue Oct 19 2021
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Object Tracking Using Adaptive Diffusion Flow Active Model
...Show More Authors

Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this

... Show More
View Publication
Scopus Clarivate Crossref