Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi method with response surface methodology and the desirability function technique. The predicted optimal values for the cube’s dimensional deviation and surface roughness were 0.0517 mm and 2.8079 µm, respectively. The experiments’ validation of the findings confirmed the results, which were determined to be 0.0560 and 0.064667 mm and 2.770 and 2.6431 µm for the dimensional deviation and surface roughness for the cube and bridge, respectively. The percentages of prediction errors between the predicted optimum results and the printed response were 7.68% and 1.36% for dimensional deviation and surface roughness, respectively. This study demonstrates that the robust method used produced a dental bridge with good accuracy and a smooth surface.
Due to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreThe exponential growth of audio data shared over the internet and communication channels has raised significant concerns about the security and privacy of transmitted information. Due to high processing requirements, traditional encryption algorithms demand considerable computational effort for real-time audio encryption. To address these challenges, this paper presents a permutation for secure audio encryption using a combination of Tent and 1D logistic maps. The audio data is first shuffled using Tent map for the random permutation. The high random secret key with a length equal to the size of the audio data is then generated using a 1D logistic map. Finally, the Exclusive OR (XOR) operation is applied between the generated key and the sh
... Show MoreBentonite is widely used in industrial applications. The present study reports the effect of adding different weights of ZnO to the Iraqi bentonite, on surface area, pore volume and real density. These surface properties were evaluated for pure and modified bentonite. The modification was made by adding different ZnO weights such as; ( 0.5%, 1%, 5%, 10% ). The effect of heat exposing for all modified clay samples at 500 ?C have been also evaluated. The results show that the addition of 0.5% ZnO leads to increase the surface area percentage about 36%, increase pore volume percentage about 5.48% and increase the real density percentage about 27.116%. When the samples exposed to 500 ?C, their surface area and pore volumes have been decreased a
... Show MorePolyaniline nanofibers (PAni-NFs) have been synthesized under various concentrations (0.12, 0.16, and 0.2 g/l) of aniline and different times (2h and 3 h) by hydrothermal method at 90°C. Was conducted with the use of X-ray diffraction (XRD), Fourier Transform Infrared spectra (FTIR), Ultraviolet-Visible (UV-VIS) absorption spectra, Thermogravimetric Analysis (TGA), and Field Emission-Scanning Electron Microscopy (FE-SEM). The X-ray diffraction patterns revealed the amorphous nature of all the produced samples. FE-SEM demonstrated that Polyaniline has a nanofiber-like structure. The observed typical peaks of PAni were (1580, 1300-1240, and 821 cm-1 ), analyzed by the chemical bonding of the formed PAni through FTIR spectroscopy. Also, tests
... Show MoreAbstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A
... Show MoreBackground: Heat-cured poly (methyl methacrylate) the principal material for the fabrication of denture base have a relatively poor mechanical properties. The aim of this study was to investigate the effect of glass flakes used as reinforcement on the surface hardness and surface roughness of the heat-processed acrylic resin material. Material and method: Glass flakes (product code: GF002) pretreated with silane coupling agent were added to Triplex® denture base powder using different concentrations. A total of 100 specimens of similar dimensions (65 x 10 x 2.5) mm were prepared, subdivided into 2 main groups of 50 specimens for each of the study tests. Ten specimens for the control group and 40 specimens for each of the experimental gro
... Show More