Abstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the AGB phases, operates only during the latter part of the quiescent phase. The results indicate that the time scale of mass loss depends on the metallicitiy of stars and mass core
There are different types of young isolated NSs: radio pulsars, compact central X-ray sources in supernova, magentas: anomalous x-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs).This paper shows that the value of magnetic field (B), characteristic age ( ), spin down luminosity ( equilibrium period ( and Flux density ( ) was determined depending on some properties of pulsar star, such as the value of period of the pulsar (P) and the time derivative period ( for sample stars which were adopted. The model that which adopted is Hallo Cone Model. The results showed that the Normal pulsar stars have a big magnetic field, equilibrium period and Spin down than the Millisecond pulsar stars.But Millisecond pulsar stars have large values of
... Show MoreBoth 13C 16O and 22Ne 25Mg reactions perform a cosmic role in the production of neutrons in AGB stars, which significantly contributes to the nucleosynthesis via the s-process. The astrophysical S-factor for both reactions is calculated in this research, utilizing EMPIRE code and depending on two parameter sets for the optical potential. These datasets were published earlier by McFadden and Satchler (denoted here as MFS) and Avrigeanu and Hodgson (denoted as AH) for the non-resonant region of the spectrum and over a temperature range of . The extrapolated S-factor at zero energy is derived to be and for 13C 16O, while the values were and fo
... Show MoreAbstract Planetary nebulae (PN) represents the short phase in the life of stars with masses (0.89-7) M☉. Several physical processes taking place during the red giant phase of low and intermediates-mass stars. These processes include :1) The regular (early ) wind and the envelope ejection, 2) The thermal pulses during Asymptotic Giant Branch (AGB ) phase. In this paper it is briefly discussed how such processes affect the mass range of Planetary Nebulae(PN) nuclei(core) and their evolution, and the PN life time, and fading time for the masses which adopted. The Synthetic model is adopted. The envelope mass of star (MeN ) and transition time (ttr) calculated respectively for the parameter (MeR =1.5,2, 3×10-3 M☉). Another time scale is o
... Show MoreThis paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreGlitches are sudden increases in the rotational frequency (ν) of a neutron star.
Glitches usually occur as fractional increase in the frequency of the order of ⁄
= - .In this work we study the glitch in normal and magnetar pulsar stars,
glitches are small or absent in the millisecond pulsar star because it is old star
whereas the weak glitch activity of young pulsars by the fact that their internal
temperatures are still too high for the crust to store a large stress .The results showed
that NART (pulsed emission only at infrared) normal pulsar has more glitches than
AXP (Anomalous X-ray Pulsar) and HE (Spin-powered pulsar with pulsed emission
from radio to infrared or higher frequencies) stars, as the same tim
The usual methods of distance determination in Astronomy parallax and Spectroscopic with Expansion Methods are seldom applicable to Nebulae. In this work determination of the distances to individual Nebulae are calculated and discussed. The distances of Nebulae to the Earth are calculated. The accuracy of the distance is tested by using Aladin sky Atlas, and comparing Nebulae properties were derived from these distance made with statistical distance determination. The results showed that angular Expansions may occur in a part of the nebulae that is moving at a velocity different than the observed velocity. Also the results of the comparison of our spectroscopic distances with the trig
Pulsar stars are rotating Neutron stars can be divided into two types Millisecond and Normal Pulsars. In this work the magnetic field are concentrated depends on the period (P), and Period derivative (P) for a sample Normal, Millisecond and Radio stars which adopted. In addition, the values of spin down luminosity and Heating rate are determined by depending on (Ostriker and Gunn) model. The results showed that older Millisecond define as having greater ages specified how long pulsars lives at that ages very long period pulsars to be observable have particularly large surface magnetic field. The results indicate that spin down of luminosity for Millisecond and Normal star must due to the main energy loss rotation axis to align with magne
... Show MoreABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release show
... Show More