Many important archaeological sites in Iraq still need to be preserved. Some of these sites were subjected to destruction and negligence. So, exploring these sites represents a priority for its protection. A 2D Electrical Resistivity Imaging (ERI) as a non-invasive geophysical survey method was implemented at a part of the Borsippa archaeological site near Babylon to search for the subsurface archaeological artefacts/structures. Electrical resistivity measurements were carried out using a Dipole-Dipole array. Steps were taken to process and filter using Horizontal profiles, forward modelling, and 2D inverse models to analyze the resistivity measurements. The ERI inversion results show that the superficial conductive zone produced variations in ERI inverse models. The low resistivity caused by the relatively high conductivity was observed due to rainwater leaking into the topsoil zone. The ERI sections revealed a coherent depth of approximately 7 meters and the anomalies geometry and semi-layering soil. These changes can be attributed to the high resistivity contrast between the relatively high-resistivity anomalies and the surrounding intact soil. The soil types include dry silty and clayey soils and crushed refractory materials such as broken bricks and ruins mixed with rock pulp. These materials have resulted in the collapse of walls due to weathering and erosion. Based on the identified patterns, shallow-depth high-resistive anomalies are present and extend throughout some parts of the study area. These anomalies are represented in a SW-NE trend of the mound area. At the bottom of this zone is another zone with low resistance values and variable thickness, which varies from place to place within the study area. The results proved the efficiency of the ERI technique in detecting archaeological wall-like artefacts, which represents a data bank for any future archaeological prospection.
Electrical Discharge Machining (EDM) is a widespread Nontraditional Machining (NTM) processes for manufacturing of a complicated geometry or very hard metals parts that are difficult to machine by traditional machining operations. Electrical discharge machining is a material removal (MR) process characterized by using electrical discharge erosion. This paper discusses the optimal parameters of EDM on high-speed steel (HSS) AISI M2 as a workpiece using copper and brass as an electrode. The input parameters used for experimental work are current (10, 24 and 42 A), pulse on time (100, 150 and 200 µs), and pulse off time (4, 12 and 25 µs) that have effect on the material removal rate (MRR), electrode wear rate (EWR) and wear ratio (WR). A
... Show MoreThis research aims to develop new spectrophotometric analytical method to determine drug compound Salbutamol by reaction it with ferric chloride in presence potassium ferricyanide in acid median to formation of Prussian blue complex to determine it by uv-vis spectrophotmetric at wavelengths rang(700-750)nm . Study the optimal experimental condition for determination drug and found the follows: 1- Volume of(10M) H2SO4 to determine of drug is 1.5 ml . 2- Volume and concentration of K3Fe(CN)6 is 1.5 ml ,0.2% . 3- Volume and concentration of FeCl3 is 2.5ml , 0.2%. 4- Temperature has been found 80 . 5- Reaction time is 15 minute . 6- Order of addition is (drug + K3Fe(CN)6+ FeCl3 + acid) . Concentration rang (0.025-5 ppm) , limit detecti
... Show MoreAbstract
The project of balad's major sewerage system is one of the biggest projects who is still in progress in salahulddin province provincial - development plan that was approved in 2013 . This project works in two parts ; the 1st is installing the sewerage networks (both of heavy sewerage & rain sewerage) and the 2nd is installing the life – off units (for heavy sewerage & rain sewerage , as well) . the directorate of salahuiddin is aiming that at end of construction it will be able to provide services for four residential quarters , one of the main challenges that project's management experience is how to achieve thes
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i
... Show MoreIn this paper, suggested method as well as the conventional methods (probability
plot-(p.p.) for estimations of the two-parameters (shape and scale) of the Weibull
distribution had proposed and the estimators had been implemented for different
sample sizes small, medium, and large of size 20, 50, and 100 respectively by
simulation technique. The comparisons were carried out between different methods
and sample sizes. It was observed from the results that suggested method which
were performed for the first time (as far as we know), by using MSE indicator, the
comparisons between the studied and suggested methods can be summarized
through extremely asymptotic for indicator (MSE) results by generating random
error
Over the last few decades the mean field approach using selfconsistent
Haretree-Fock (HF) calculations with Skyrme effective
interactions have been found very satisfactory in reproducing
nuclear properties for both stable and unstable nuclei. They are
based on effective energy-density functional, often formulated in
terms of effective density-dependent nucleon–nucleon interactions.
In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,
Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have been
used within HF method to investigate some static and dynamic
nuclear ground state proprieties of 84-108Mo isotopes. In particular,
the binding energy, proton, neutron, mass and charge densities
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreThe effective Skyrme type interactions have been used in the Haretree-Fock
mean-field model for several decades, and many different parameterizations of the
interaction have been realized to better reproduce nuclear masses, radii, and various
other data. In the present research, the SkM, SkM*, SI, SIII, SIV, T3, Sly4, Skxs15,
Skxs20 and Skxs25 Skyrme parameterizations have been used within Haretree-Fock
(HF) method to investigate some static and dynamic nuclear ground state properties
of 174-206Hg isotopes. In particular, the binding energy per nucleon, proton, neutron,
mass and charge densities and corresponding root mean square radii, neutron skin
thickness and charge form factor. The calculated results are comp