Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated disease penetrances. A theoretical justification of the above model is provided. Furthermore, we introduce a hypothesis test for haplotype inheritance patterns which underpin this model. The performance of the proposed approach is evaluated by simulations and real data analysis. The results show that the proposed approach outperforms an existing multiple testing method.
The current paper aims to identify potential factors associated with employees’ intentions to leave information and communication technology companies in Iraq. There is evident variability in the literature regarding these factors; hence, a factor analysis approach was employed to identify these factors within the surveyed environment. Due to the difficulty in precisely delineating the size of the research population, a purposive sampling method was employed to reach an appropriate number of respondents within the aforementioned companies. A total of 288 employees responded to the survey conducted via Google Forms. The test results revealed the presence of five primary factors associated with employees’ intentions to leave, name
... Show MoreSamarium ion selective electrodes we1·e construct.ed and prepared
then tested as probefor Samarium ion detection and determination in different aqueous solutions.
The sensitive membrane is made of PVC which contains Samarium
picrate complexed with either 18-crown-6 or 15-crown-5 ethers as active species.
Different plasticizers: phthalates (DBPH), phosphates (DBP) and
phosphonates (DOPP) were incorporated into the membranes as solvent
mediators.
Every membrane was evaluated practically following &n
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreIn this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreThe aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show MoreA novel series of mixed-ligand complexes of the type, [ML 1 (L 2 ) 3 ]Cl x [M = Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiffbase (HL 1 ) as main ligand, nicotinamide (L 2 ) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL 1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR, 1 H-NMR, 13 C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiffbase ligand, HL 1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxy- gen atom
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreLimitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a