This study was achieved to satisfy two goals, the first of which is to treat an environmental problem represented by the disposal of date seeds, and the second is the use of these wastes to improve some mechanical and thermal properties of poly methyl methacrylate PMMA through strengthening different proportions of the powder of date seeds.
Particles of date seeds were used as a natural strengthening material for PMMA polymer, by mixing the matrix material (resin) with the hardener while still stirring continuously for a period of 10 min. After that, the samples of the reinforced material were prepared by adding the powder of date seeds, which is the reinforcing substance, with different percentages of weight fraction (0, 0.5, 1,
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time
Microwave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show MoreIn this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MorePure and iron-doped cadmium oxide ((CdO)1-xFex) thin films at different ratios were prepared using pulsed laser deposition technique. The X-ray diffraction showed a polycrystalline structure for all samples associated with cubic CdO structure. Another phase appeared at the highest ratio corresponding to the cubic Fe phase. Crystallinity was enhanced and crystalline size increased with increasing Fe ratio. AFM measurements showed that increase of Fe ratio led to an increase in the average particle diameter. In addition, the distribution of particle size became wide and of irregular behaviour, as well as increasing of the average roughness and the root-mean-square roughness. Increasing the Fe ratio caused
... Show MoreIn this work, the influence of the annealing temperature on the optical properties of the thin films Cadmium Sulphide (CdS) has been studied. Thin films of Cadmium Sulphide (CdS) were made using the Physical Vapor Deposition (PVD) method. The optical properties of annealing temperatures (as deposited, 200, 250, and 300 ) were scrupulous. The UV/VIS spectrophotometer investigated optical parameters such as transmission, the coefficient of absorption and energy gap of the films for the range (400-110 nm) as an assignment of the annealing temperature. The optical properties were calculated as a function of annealed temperature: absorption, transmission, reflection, band gap, coefficient of absorp
... Show MoreAsphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show More