The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
By definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreWe can understand interior design as a series of interconnected human principles and goals formed by science and knowledge to build a human product that reveals or gives meaning to things، and this can be presented through ecology as a system concerned with environmental aspects and as part of interior design، seeking to achieve aesthetic and functional values، in an interactive form between spaces The interior and its occupants are within an environmental balance full of life، and the ecological interior design attaches great importance to the embodiment of spiritual aspects in the internal environment، in addition to emphasizing the importance of protecting the environment and preserving resources through saving in its use and usi
... Show MoreSince his first existence on earth, human had formed a connecting link for a regressive, kinetic and developed relationship that comes from a semi-complicated interaction between natural environment and constructed environment, and this resulted in the survival of human and his existence continuance. Constructed environment enabled human to survive the natural environment inconstancies and enemies as predators, also it helped him to feel safe, comfortable and to practice his everyday life activities...etc. This alternative interaction resulted in creating a civilized legacy for a group of landmarks that tell about the development of this relationship by elemental output that reached us either by documents and manuscripts or as an existed
... Show MoreThe phenotypic characteristics in the interior spaces are seeing the result of the ability of the designer in his handling of the vocabulary and the elements to deliver a specific meaning for the recipient , and is working to stir up the receiver and make it effective in the process of perception of space. So the theme of the role of phenotypic characteristics is of great significance in the process of analyzing spaces to reach the goal of the main idea , and show those qualities through relationships design in terms of shape, color and texture ... etc. , to reach also designs more beautiful , and creating an internal environment , creative and continuous with its external environment , Hence the importance of research in that it tries t
... Show MoreIndexes of topological play a crucial role in mathematical chemistry and network theory, providing valuable insights into the structural properties of graphs. In this study, we investigate the Resize graph of G2(3), a significant algebraic structure arising from the exceptional Lie group (G2) over the finite field F3. We compute several well-known topological indices, including the Zagreb indices, Wiener index, and Randić index, to analyze the graph's connectivity and complexity. Our results reveal intricate relationships between the algebraic structure of G2(3) and its graphical properties, offering a deeper understanding of its combinatorial and spectral characteristics. These findings contribute to the broader study of algebraic graph t
... Show More