COVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduced forecasting procedures into Artificial Neural Network models compared with regression model. Data collected from Al –Kindy Teaching Hospital from the period of 28/5/2019 to 28/7/2019 show an energetic part in forecasting. Forecasting of a disease can be done founded on several parameters such as the age, gender, number of daily infections, number of patient with other disease and number of death . Though, forecasting procedures arise with their private data of tests. This study chats these tests and also offers a set of commendations for the persons who are presently hostile the global COVID-19 disease.
Objective: To determine the quality assurance for maternal and child health care services in Baghdad City.
Methodology: A descriptive study is conducted throughout the period of November 28th 2008 to October 10th
2009. A simple random sample of (349) is selected through the use of probability sampling approach. The study
sample was divided into four groups which include (220) consumers, (35) medical staff, (72) nursing staff and (22)
organization structure (primary health care centers). Data were collected through the use of assessment tools. It was
comprised of four questionnaires and overall items included in these questionnaires are (116) items. The study
included assessment of organization structure. Data were colle
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreThe Umm Al-Naaj Marsh was chosen in Maysan province, and it is one of the sections of Mar Al-Hawza, which is one of the most prominent Iraqi marshes in the south. The marshes are located between latitudes 30 35 and 32 45 latitudes and longitudes 13 46 and 48 00. The area of the study area is 76479.432142 hectares to evaluate soil quality and health index and their spatial distribution based on measuring physical, chemical, biological and fertility traits and calculating the total quality index for those characteristics. Using an auger drilling machine, we collected 50 randomly selected surface samples, evenly distributed across the study region, from Al-Aq 0.0–0.30 m, noting their precise locations along the way. Soil health and quality w
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreWorldwide, hundreds of millions of people have been infected with COVID-19 since December 2019; however, about 20% or less developed severe symptoms. The main aim of the current study was to assess the relationship between the severity of Covid-19 and different clinical and laboratory parameters. A total number of 466 Arabs have willingly joined this prospective cohort. Out of the total number, 297 subjects (63.7%) had negative COVID-19 tests, and thus, they were recruited as controls, while 169 subjects (36.3%) who tested positive for COVID-19 were enrolled as cases. Out of the total number of COVID-19 patients, 127 (75.15%) presented with mild symptoms, and 42 (24.85%) had severe symptoms. The age range for the partic
... Show More