Complement activation leads to membrane attack complex formation, which can lyse not only pathogens but also host cells. Histones can be released from the lysed or damaged cells and serve as a major type of damage-associated molecular pattern, but their effects on the complement system are not clear. In this study, we pulled down two major proteins from human serum using histone-conjugated beads: one was C-reactive protein and the other was C4, as identified by mass spectrometry. In surface plasmon resonance analysis, histone H3 and H4 showed stronger binding to C4 than other histones, with KD around 1 nM. The interaction did not affect C4 cleavage to C4a and C4b. Because histones bind to C4b, a component of C3 and C5 convertases, their activities were significantly inhibited in the presence of histones. Although it is not clear whether the inhibition was achieved through blocking C3 and C5 convertase assembly or just through reducing their activity, the outcome was that both classical and mannose-binding lectin pathways were dramatically inhibited. Using a high concentration of C4 protein, histone-suppressed complement activity could not be fully restored, indicating C4 is not the only target of histones in those pathways. In contrast, the alternative pathway was almost spared, but the overall complement activity activated by zymosan was inhibited by histones. Therefore, we believe that histones inhibiting complement activation is a natural feedback mechanism to prevent the excessive injury of host cells.
Theoretical and experimental investigations have been carried out on developing laminar
combined free and forced convection heat transfer in a vertical concentric annulus with uniformly
heated outer cylinder (constant heat flux) and adiabatic inner cylinder for both aiding and opposing
flows. The theoretical investigation involved a mathematical modeling and numerical solution for
two dimensional, symmetric, simultaneously developing laminar air flows was achieved. The
governing equations of motion (continuity, momentum and energy) are solved by using implicit
finite difference method and the Gauss elimination technique. The theoretical work covers heat flux
range from (200 to 1500) W/m2, Re range from 400 to 2000 an
The aim of this study is to show the concepts of nuclear shape and the geometrical picture to the even-even nuclei of 164,166,168E isotopes in the context of the Interacting boson Model IBM-1. The energy spectra were calculated and the effective charge values (eB) of the electromagnetic transition strength were obtained and used to calculate the B(E2) values of the electromagnetic transitions and the quadrupole moment Q of 2+ -states. The Hamiltonian parameters were calculated by taking in account the properties of these nuclei. Comparison were made with the available experimental data and included in tables. The geometrical picture of these nuclei were looked at by calculating the deformation which were represented by the potentia
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreAbstract
This work involves studying the effect of adding some selective organic component mixture on corrosion behavior of pure Al and its alloys in condensed synthetic automotive solution (CSAS) at room temperature. This mixture indicates the increasing of octane number in previous study and in this study show the increasing in corrosion resistance through the decreasing in corrosion rate values.
Electrochemical measurements were carried out by potentiostat at 3 mV/sec to estimate the corrosion parameters using Tafel extrapolation method, in addition to cyclic polarization test to know the pitting susceptibility of materials in tested medium.
The cathodic Tafel slope
... Show MoreAccording to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
Colorectal cancer (CRC), the second most fatal cancer and the 3rd most common cancer is expected to cause 0.9 million deaths globally in 2025. Carcinoembryonic antigen (CEA) is currently used in the follow-up of patients with colorectal cancer, and in this study, we are trying to find a better marker than CEA in following up on patients' health and knowing the effectiveness of the treatment used and as a diagnostic marker for colorectal cancer. To determine the significance of Cancer antigen 72-4 (CA72-4) as a prognosis predictor in patients with colorectal cancer, compare its prognostic validity to the CEA biomarker. this case-control study includes (150) participants, 100 patients (59 males and 41 females), and 50 healthy controls
... Show More