This research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reduction in the energy gap, increased DC conductivity, and enhanced photocurrent response, highlighting the potential of PPy-GO composites for advanced optical sensors. These findings suggest that PPyGO composites could offer improved performance in sensor applications where sensitivity and response speed are critical.
Capacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. While
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show MoreThe acidity of spent lubricant was treated using sodium hydroxide solution. The effect of three variables on the treatment have been studied . These are mixing time rangingfrom 5-35 minutes, NaOH to lubricant weight ratio ranging from 0.25-1.25 and weight percentage of NaOH ranging from 2-6 % .
The experimental design of Box-Wilson method is adopted to find a useful relationship between the three controllable variables and the lowering in the acidity of the spent lubricant. Then the effective variables and interactions are identified using the statistical analysis(F-test) of three variable fractional design. The mathematical model is well represented by a second order polynomial.
By
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreThe increased food requirement puts intense pressure on the agriculture community to grow more from the same resources resulting in people leaving the farming business. This happened not exclusively due to the industrial pressure to produce more but to the lack of technology adoption among growers. The use of the sensor in agriculture is not new, but its adoption among agriculture producers is a challenge for industry and scientists. This study aimed to determine sensors used in agricultural fields with challenges and prospects. The study found that sensors have successfully been used at the industry level with highly skilled labor; however, their adoption is challenging in rural agriculture systems due to the lack of a support
... Show MoreIn this work we used the environmentally friendly method to prepared ZrO2 nanoparticles utilizing the extract of Thyms plant In basic medium and at pH 12, the ZrO2 NPs was characterized by different techniques such as FTIR, ultraviolet visible, Atomic force microscope, Scanning Electron Microscopy, X-ray diffraction and Energy dispersive X-ray. The average crystalline size was calculated using the Debye Scherres equation in value 7.65 nm. Atomic force microscope results showed the size values for ZrO2 NPs were 45.11nm, and there are several distortions due to the presence of some large sizes. Atomic force microscope results showed the typical size values for ZrO2 NPs were 45.11 nm, and there are several distortions due to the presence of so
... Show MoreHerein, the interfacial polymerization method has been used for the synthesis of PPy/NaVO3 composites with different compositions of NaVO3 (10 %, 20 %, 30 %, 40 % and 50 %) as an efficient electrode material for supercapacitors. The successful formation and composition of the as-prepared composites (PV1-PV5) were confirmed by FTIR, XRD, EDX, and SEM analysis. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanometric charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 electrolyte. As compared to other, the PV4 composite exhibit excellent specific capacitance of 391 F g−1 at a current density of 0.75 A/g with good cycling stability of ∼59 % after 1000 cycle
... Show MoreThis study aims at recognizing Pesticides and how the process of pesticides biodegradation by microbiology took place, and the effect of environmental condition on this process. And how the research uncovered the efficiency of microbiology in the biodegradation process of pesticides, as the perfect temperature for the biodegradation process is 40 °C and humidity effect on pesticides efficiency, when high humidity reduces pesticide efficiency and the perfect acidity to increase bacteria efficiency is 7, for the incubation period, it was found during the previous studies that the best incubation period is 5-7 days, in this period the bacteria imprint on pesticides and increase biodegradation of it.