Preferred Language
Articles
/
yRdpZJABVTCNdQwCCIjV
Adsorption Optimization of Congo Red Dye onto Electrospun Nanofibers of Polyacrylonitrile functionalized with Fe3O4 Nanoparticles

Ferric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of adsorption system. The results referred that the adsorption capacity increases with increasing ionic strength and it was in natural medium has a greatest value. So, the desorption process was examined to demonstrate the possibility of recycling of the adsorbent surface. The desorbed dye from the studied adsorbent surface in basic solution was better than acidic solution

Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Environmental Engineering And Science
Fenton-like degradation of direct blue dye using green synthesised Fe/Cu bimetallic nanoparticles

This study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Dec 30 2018
Journal Name
Baghdad Science Journal
Adsorption and Kinetic Study of Methylene Blue dye on New Surface Derived from Copolymer (Melamine – Formaldehyde – Para- methyl Anisole)

A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Carbonized Copolymers Nonwoven Nanofibers Composite: Surface Morphology and Fibers Orientation

Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG).  The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Influence of Acid Activation of a Mixture of Illite, Koalinite, and Chlorite Clays on the Adsorption of Methyl Violet 6B Dye

The influence of acid activation of a mixture of illite, kaolinite, and chlorite clays collected from the area of Zorbatiya (east of Iraq) on the adsorption of methyl violet 6B (MV6B) as a cationic dye was studied. The activation was carried out by using 0.25M HCl and 0.25M . Raw and acid-activated clays were analyzed by atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD).

Batch adsorption method was used to study the adsorption of MV6B onto the raw and acid activated clays. The impacts of different factors on the adsorption process were studied, such as clay weight, agitation time, starting MV6B concentration, temperature, ionic strength, and solution pH. The adsorption process was desc

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Aug 20 2023
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Manganese oxide Nanoparticles Using Punica Granatum Extract

Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75

... Show More
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jul 20 2023
Journal Name
Baghdad Science Journal
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Vanadium Oxide Nanoparticles Using Punica Granatum Extract

This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jul 24 2023
Journal Name
Pollution Research
View Publication
Publication Date
Tue Dec 29 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Preparation, Characterization and Optimization of Etoposide-Loaded Gold Nanoparticles Based on Chemical Reduction Method

In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fluorescence Characteristics of Coated- Cell Dye Solutions Containing Highly Pure Nanoparticles as Random Gain Media

In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Effect of Ag nanoparticles on R6G laser dye hosted by PMMA polymerized by plasma jet

This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible

... Show More
Crossref (1)
Crossref
View Publication Preview PDF