Preferred Language
Articles
/
yRcXCJABVTCNdQwCVoIV
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled as a risk haplotype. Unfortunately, the in-silico reconstruction of haplotypes might produce a proportion of false haplotypes which hamper the detection of rare but true haplotypes. Here, to address the issue, we propose an alternative approach: In Stage 1, we cluster genotypes instead of inferred haplotypes and estimate the risk genotypes based on a finite mixture model. In Stage 2, we infer risk haplotypes from risk genotypes inferred from the previous stage. To estimate the finite mixture model, we propose an EM algorithm with a novel data partition-based initialization. The performance of the proposed procedure is assessed by simulation studies and a real data analysis. Compared to the existing multiple Z-test procedure, we find that the power of genome-wide association studies can be increased by using the proposed procedure.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of parameters of two-dimensional sinusoidal signal model by employing Deferential Evaluation algorithm and the use of Sequential approach in estimation
...Show More Authors

Estimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model  in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling  the Symmetric gray scale texture image and estimating by using

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
The possibility of Using the Low-Cost External Antenna with Smartphone for Accurate Surveying Applications by RTX Technology
...Show More Authors
Abstract<p>Real Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig</p> ... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
The possibility of Using the Low-Cost External Antenna with Smartphone for Accurate Surveying Applications by RTX Technology
...Show More Authors
Abstract<p>Real Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig</p> ... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Mathematical Models And Computer Simulations
Function Approximation Technique (FAT)-Based Adaptive Feedback Linearization Control for Nonlinear Aeroelastic Wing Models Considering Different Actuation Scenarios
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation
...Show More Authors

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus
Publication Date
Mon Mar 27 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Evaluation of the Clinical use of Metformin or Pioglitazone in Combination with Meloxicam in Patients with Knee Osteoarthritis; using Knee Injury and Osteoarthritis outcome Score
...Show More Authors

Osteoarthritis is the most prevalent arthritic disease and a leading cause of disability. The pathogenesis of osteoarthritis involves multiple etiologies, including variable degree of synovial inflammation. Metformin and pioglitazone could potentially reduce the levels and activity of inflammatory mediators. This may consider as a new therapeutic approach added to the current used drugs in an attempt to decrease the pain, inflammation, and improve daily activity and quality of life in patients with knee osteoarthritis.

This study designed to evaluate the clinical utility of using metformin or pioglitazone as anti-inflammatory agents in combination with non-steroidal anti-inflammatory drugs (NSAID) of selective type of cyclooxygen

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon May 01 2023
Journal Name
Human Gene
The G allele of the ADAM33 T1 polymorphism (rs2280091) is a risk factor associated with asthma severity among the Iraqi Arab population
...Show More Authors

Background: The gene encoding a disintegrin and metalloproteinase domain 33 (ADAM33) is known to be associated with asthma in different ethnic groups. In Iraq, among the Arab ethnic background, this association has not yet been highlighted. Methods: One hundred and ninety-two asthmatics were examined; 118 males and 74 females (mean age 38.23 ± 9.13 years). The control group was 183; 110 males and the rest were females. The SNP of rs2280091 A/G (T1) was studied here to determine adam33 genotyping status using polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The level of total IgE was measured using enzyme-linked immunosorbent assay (ELISA). Results: Significant differences (p = 0.004) in the frequencies of

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref