The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled as a risk haplotype. Unfortunately, the in-silico reconstruction of haplotypes might produce a proportion of false haplotypes which hamper the detection of rare but true haplotypes. Here, to address the issue, we propose an alternative approach: In Stage 1, we cluster genotypes instead of inferred haplotypes and estimate the risk genotypes based on a finite mixture model. In Stage 2, we infer risk haplotypes from risk genotypes inferred from the previous stage. To estimate the finite mixture model, we propose an EM algorithm with a novel data partition-based initialization. The performance of the proposed procedure is assessed by simulation studies and a real data analysis. Compared to the existing multiple Z-test procedure, we find that the power of genome-wide association studies can be increased by using the proposed procedure.
Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GS
Transparent nano- coating was prepared by Sol-Gel method from titanium dioxide TiO2 which has the ability to self-cleaning coating used for hospitals, laboratories, and places requiring permanent sterilization. Three primary colors are selected (red, blue, and yellow) as preliminary study to the effect of these colors on the nano-coating. Three traditional oil paints color were used as base, then coated by a layer of TiO2-Sol and deposited on the paints. The optical properties of TiO2-Sol were measured; the maximum absorption wavelength at (λmax=387 nm), the refractive index (n=1.4423) and the energy band gap (Eg=3.2 eV). The structure properties found by X-ray diffraction of TiO
Realizing the full potential of wireless sensor networks (WSNs) highlights many design issues, particularly the trade-offs concerning multiple conflicting improvements such as maximizing the route overlapping for efficient data aggregation and minimizing the total link cost. While the issues of data aggregation routing protocols and link cost function in a WSNs have been comprehensively considered in the literature, a trade-off improvement between these two has not yet been addressed. In this paper, a comprehensive weight for trade-off between different objectives has been employed, the so-called weighted data aggregation routing strategy (WDARS) which aims to maximize the overlap routes for efficient data aggregation and link cost
... Show More
In this article we study a single stochastic process model for the evaluate the assets pricing and stock.,On of the models le'vy . depending on the so –called Brownian subordinate as it has been depending on the so-called Normal Inverse Gaussian (NIG). this article aims as the estimate that the parameters of his model using my way (MME,MLE) and then employ those estimate of the parameters is the study of stock returns and evaluate asset pricing for both the united Bank and Bank of North which their data were taken from the Iraq stock Exchange.
which showed the results to a preference MLE on MME based on the standard of comparison the average square e
... Show MoreToday, the success or failure of organizations depends to possess the wisdom of their managers promised that the key to organizational success of the business environment, making the right decisions, and create the ability to work and think towards discrimination of products and services the organization . Seek this research to investigation the relationship between the wisdom management and differentiation strategy for service operations . It was a test of that relationship in light of the results of the analysis of the data collected through the questionnaire distributed on a sample from (98) Director Mangers, head of department and head of division in the General Establishment of Civil Aviation . The research used descriptive st
... Show MoreThis research dealt with the subject of auditing bank credit risks in accordance with international auditing standards and aims to develop procedures and design a credit risk audit program in accordance with international auditing standards and demonstrate their impact on the truth, truthfulness and fairness of financial statements and on their overall performance and continuity in the banking sector Its importance lies in relying on international auditing standards to assess and measure bank credit risk and its impact on the financial situation as well as the ability to predict financial failure. A set of conclusions have been reached, the most important of which is that the bank faces difficulties in measuring credit risk in accordance
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show More