The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled as a risk haplotype. Unfortunately, the in-silico reconstruction of haplotypes might produce a proportion of false haplotypes which hamper the detection of rare but true haplotypes. Here, to address the issue, we propose an alternative approach: In Stage 1, we cluster genotypes instead of inferred haplotypes and estimate the risk genotypes based on a finite mixture model. In Stage 2, we infer risk haplotypes from risk genotypes inferred from the previous stage. To estimate the finite mixture model, we propose an EM algorithm with a novel data partition-based initialization. The performance of the proposed procedure is assessed by simulation studies and a real data analysis. Compared to the existing multiple Z-test procedure, we find that the power of genome-wide association studies can be increased by using the proposed procedure.
Background: Dialysis is in common use to treat patients
with end stage renal failure .However longstanding dialysis
harboring some cellular changes in various body fluids.
This study was conducted in order to detect these changes
in urine.
Objective: The study was conducted to detect cellular
changes in urine of patients with longstanding dialysis.
Method: Fifty-three urine samples were examined
cytologically obtained from patients with longstanding
dialysis during 6 months period. Freshly voided midstream
urine samples were taken . Samples were centrifuged and 2
to 3 drops of sediments were smeared on 2 glass slides and
fixed in 95% ethyl alcohol then stained with Hand E stain
to be evaluated.
R
This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB ) to find the optimal solution
Background: Fibromyalgia syndrome (FMS) is the
most common rheumatic cause of diffuse pain and
multiple regional musculoskeletal pain and disability.
Objective: is to assess the contribution of serum
lipoprotein (A) in the pathogenesis of FMS patients.
Methods: One hundred twenty two FMS patients
were compared with 60 healthy control individuals
who were age and sex matched. All FMS features and
criteria are applied for patients and controls; patients
with secondary FMS were excluded. Serum
Lipoprotein (A): [Lp(A)], body mass index (BMI), &
s.lipid profile were determined for both groups.
Results: There was a statistical significant difference
between patients &controls in serum lipoprotein
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreBACKGROUND: Preeclampsia (PE) is a possible etiology of obstetrical and neonatal complications which are increased in resource-limited settings and developing countries. AIM: We aimed to find out the prevalence of PE in Iraqi ladies and specific outcomes, including gestational weight gain (GWG), cesarean section (CS), preterm delivery (PD), and low birth weight (LBW). METHODS: All singleton pregnant women visiting our tertiary center for delivery were involved over 3 years. PE women were compared with non-PE ladies. Complete history and examination were done during pregnancy and after delivery by the attending obstetrician and neonatologist with full documentation in medical records. RESULTS: PE prevalence was 4.79
... Show MoreThe purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =